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Abstract—The unstructured nature of point cloud data makes
compression of their attributes very challenging. In this paper,
the known approach of using the Graph Fourier Transform
on partitions of the point cloud is improved. It is proposed
to make the partitioning process both geometry and attribute-
aware, taking all of the point cloud’s characteristics into account
simultaneously. Additional information, that allows the decoder
to reproduce the partitioning of the encoder, is added to the bit-
stream. Furthermore, a refinement algorithm which re-estimates
the partitioning information at the encoder with the decoder in
mind is proposed. Experiments show that the baseline method
is outperformed in Bjøntegaard Delta rate reduction by 2.39%,
reaching as much as 3.58% at high bitrates.

Index Terms—3D Point cloud compression, cluster-based par-
titioning, color attributes, Graph Fourier Transform

I. INTRODUCTION

As methods of acquiring point clouds become more and
more accessible, they constitute an increasingly popular way of
representing 3D objects, which enable diverse applications e.g.
free view-point rendering and autonomous driving. The data
is initially a set of unrelated, unstructured points, which make
point clouds very costly to store and transmit, thus driving the
need for compression methods adapted to point cloud data.

The Moving Pictures Expert Group (MPEG) introduced
two different point cloud coding standards: on one hand,
V-PCC [1] finalized in 2021, which leverages existing video
coding standards for compression, and on the other hand,
G-PCC [2], which directly exploits the geometry of the point
cloud and is still under development. Representing a point
cloud as an octree is a popular technique used for partitioning
the point cloud, which enables working at a block level. It not
only provides an efficient way of signalling the partitioning,
but is also very fast. Several schemes, e.g. [3], and [4] which
is part of G-PCC, use it as part of their compression pipeline.
Octree partitioning is improved by e.g. [5] who adaptively di-
vides the voxels using non-square subdivisions. More recently,
neural network-based solutions have been proposed for point
cloud attribute compression as well, e.g. [6], [7].

In contrast, originally pioneered in [8], graph representa-
tions of point clouds have allowed the use of the Graph Fourier
Transform (GFT) for compression of point cloud attributes
to remarkable success. This approach has been the basis for
several improved methods over the years, such as [9] which
introduces the multi-resolution transform RA-GFT, or [10],
which predicts the graph from a set of selected representative
points. Cluster-based partitioning has been introduced more

recently to provide a more flexible alternative to octree par-
titioning: [11] uses the geometry information of the points
as features for clustering thus providing a data-dependent
partitioning scheme. This has also been combined with the
GFT by [12], [13].

The problem of point cloud attribute compression is tackled
in this paper by extending the partitioning method of [12]
which clusters the geometry information at both encoder and
decoder. In contrast, utilizing both geometry and attribute
information for cluster-based partitioning is proposed in this
paper. This approach produces partitions that have smoother
attributes which can be more efficiently represented in the GFT
domain, eventually increasing the compression performance.
Since the attributes are not available as input to the decoder,
some side information is transmitted to help the decoder re-
produce the encoder’s partitioning. The code for our approach
is available at https://github.com/IENT/AA-PCAC.

This paper is structured as follows: The fundamentals of
using the GFT for point cloud attribute coding are summa-
rized in Section II. Based on that, the novel attribute-aware
partitioning method is introduced in Section III. Conducted
experiments and their results are presented in Section IV and
finally conclusions are drawn in Section V.

II. ATTRIBUTE CODING WITH GRAPH FOURIER
TRANSFORM

Point clouds consist of N points, each possessing geometry
information vi = (xi, yi, zi)

⊤ ∈ R3 and corresponding
attributes ai ∈ R3. In this paper, it is assumed that the
attributes hold 8-bit RGB color information such that ai =
(ri, gi, bi)

⊤ ∈ [0, 255]
3. It is assumed that the points are

voxelized and thus the point cloud has an intrinsic resolution.
In the following sections, two previous methods [8], [12]

for coding point cloud attributes are summarized. As shown in
Fig. 1, the point cloud is first divided into partitions which are
then each turned into a graph, enabling the usage of the Graph
Fourier Transform (GFT) for transforming the l-th partition’s
attributes Al as the second step. The resulting coefficients Âl

are then quantized, coded and send to the decoder which
inverts these steps to obtain the coded attributes Ã.

A. Partitioning

Applying the GFT to a graph representing the entire input
point cloud is not computationally feasible, thus it is necessary
to divide the point cloud into blocks or partitions. Traditional
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Fig. 1: Point cloud attribute compression scheme [8] with proposed modifications (in bold).

methods, e.g. [8], use octree partitioning for dividing the
3D space evenly into eight voxels called octants. Octants
not containing any points are discarded, while the others are
recursively divided a given number of times in the same
way. The resulting partitions of the point cloud can then be
represented using an octree where each node has a maximum
of eight children.

However, this paper focuses on data-driven partitioning
instead, as in [12], where geometry-based clustering yields
non-uniform partitions. There, the k-means algorithm is used
to partition the point cloud by using the points’ geometry
information vi as features for clustering at both encoder and
decoder. The number of clusters k is set to be dependent on
the number of points N . This method creates partitions that
are more similarly sized, and which further account for the
geometry characteristics of the point cloud compared to the
partitions represented by an octree.

B. Graph Fourier Transform

The sub-point cloud contained in each partition is turned
into a graph G = (N ,W ) where N = {n1, n2, . . . , n|N |}
is a set of nodes and W is the weighted adjacency matrix.
The nodes are chosen as the points of the sub-point cloud
and (W )ij = wij , if non-zero, is the weight of the edge
connecting the points ni and nj . Several methods were pro-
posed to determine the graph’s edges and their weights wij :
In [8], neighboring nodes are connected if their positions vary
by at most 1 along any axis and sets wij to the inverse
of the Euclidean distance between the two nodes. For the
Normal Weighted Graph Fourier Transform (NWGFT) [12],
the weights are computed using local spatial features of the
nodes. While the geometric similarity between nodes is more
accurately represented by the resulting graph, it also introduces
several additional parameters and overhead. In this work the
method of [8] is used to compute the adjacency of the graphs.

Let L = D − W be the combinatorial graph Lapla-
cian matrix of a given graph G where D = diag(di) and
di =

∑
j wij . Since L is positive semidefinite, it has a full set

of orthogonal eigenvectors U that can be obtained using the
eigen-decomposition of L:

L = UΛU⊤ . (1)

U⊤ is used as the Graph Fourier Transform matrix to project
a signal defined on the graph’s nodes y onto the GFT domain
i.e. ŷ = U⊤y. The signal can be retrieved with y = Uŷ.

III. GEOMETRY-AND-ATTRIBUTE-AWARE PARTITIONING

In Fig. 1, the classic compression scheme from [8] that
codes the point cloud’s attributes A using the GFT on parti-
tions of the point cloud is shown. The proposed modifications
are highlighted and consist of an attribute-aware partitioning
method, not only exploiting the geometry V but also the at-
tributes A, extending the approach of [12]. Since the attributes
are not available at the decoder the necessary information that
will enable the decoder to reproduce the same partitions as the
encoder has to be send additionally.

A. Clustering Scheme

The main goal of the proposed method is to generate
partitions that have smooth attributes, in order to enhance the
compression of the subsequent GFT. Here, a clustering-based
partitioning method is utilized. In contrast to [12], not only
the geometry V but also the attributes A are used as features
for clustering at the encoder. Prior to clustering, the attributes
are converted from RGB to the CIE L*a*b* color space [14]
and denoted again as ai for sake of simplicity. Geometry and
attributes are combined as

xV Ai =

(
v̄i
λāi

)
∈ R6 (2)

where vi, ai are scaled to zero mean and unit variance yielding
v̄i, āi. The steering parameter λ controls the importance of the
attributes during clustering.

Using k-means on the concatenated data given by (2) to
generate the cluster labels LV A can be alternatively expressed
with the following label update rule

lV Ai = argmin
j

∥v̄i − cV j∥2 + λ∥āi − cAj∥2 (3)

where cV j , cAj denote the j-th center in either the geometry
or the attribute domain, respectively. Note that for λ = 0,
the partitioning becomes equivalent to the method of [12].
The value of λ could be chosen using a rate-distortion-based
decision.
CV A ∈ Rk×6 are cluster centers that comprise both geom-

etry and attributes, and are thus obtained by combining cV j
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Fig. 2: Proposed encoder partitioning scheme containing the
corresponding decoder steps.

and cAj akin to (2). Since only the geometry information V
is available at the decoder, the last three dimensions of CV A,
containing the centers w.r.t. the attributes, are dropped yielding
the geometry centers CV ∈ Rk×3. These centers, which
constitute the necessary side information, are quantized, coded,
and sent to the decoder.

At the decoder, only the geometry V and the quantized
centers C̃V are at hand. The partition labels LV are thus
obtained by setting λ = 0 in (3) with

lV i = argmin
j

∥v̄i − c̃V j∥2 . (4)

Note that this label assignment step is executed only once,
which makes the computational overhead for the decoder very
low, compared to [12]. In order to ensure consistent partitions
between encoder and decoder, the encoder uses the final labels
LV as well by simulating the decoder at the encoder i.e. de-
coding CV and applying (4) once subsequently. The encoder’s
partitioning algorithm is summarized in Fig. 2, where the part
that simulates the decoder is outlined accordingly. Please note
that the Mini-batch k-Means algorithm [15] is used throughout
this work for clustering1.

B. Refinement Algorithm

In Section III-A the partition centers CV are calculated
at the encoder with both geometry and attributes at hand.
However, the fact that the decoder has solely access to the
geometry for obtaining the partition labels given by (4) was
neglected in the encoder clustering step until now. In this
section, a refinement algorithm which re-calculates the centers
with the decoder in mind is proposed: For initialization, it
is assumed that k-means was conducted as described in the
previous section.

To refine the centers, first a weighting factor is calculated
for each point i in partition j

αi = pnorm (ai, µa,j ,Σa,j) (5)

with pnorm(x, µ,Σ) being the multivariate normal distribution
and µa,j ,Σa,j mean vector and covariance matrix estimated
from the corresponding attributes of points belonging to par-
tition j. Note that this ensures that points which color is

1Note that the proposed method is not restricted to this particular clustering
scheme and that any other center-based algorithm could be used instead.

(a) Original colors (b) λ = 0

(c) λ = 0.3 (d) λ = 0.3 with refined centers

Fig. 3: Comparison of different partitioning schemes for exem-
plary extract from “Loot” sequence: Baseline method [12] with
λ = 0 compared to proposed method with λ = 0.3 without
and with refined centers.

close to the partition’s average color are assigned with a large
weighting factor.

Second, the weights are then used to update the centers as
a weighted mean

cV,ref j =
1∑
i αi

∑
i∈Pj

αivi (6)

with Pj containing all points belonging to partition j (all
points for which li = j holds). The labels are again updated
with the decoder update rule (4). This resembles a weighted
k-means procedure [16], with the important difference being
that the label update step always assumes uniform weights,
since the weights cannot be calculated at the decoder. Note
that this refinement step is iteratively applied I times.

Fig. 3 displays an exemplary point cloud with different
partitions: In Fig. 3b, the partitions obtained by [12] by setting
λ = 0 in (3) are shown. Enabling λ > 0 yields partitions
which take the color information into account, as can be seen
in Fig. 3c . Fig. 3d illustrates that additionally enabling the
proposed refinement algorithm yields even better partitions
compared to Fig. 3c. This becomes especially evident at the
boundary between light and dark blue colored points.

IV. EXPERIMENTAL RESULTS

The point cloud sequences “Loot”, “Longdress”, “Soldier”
and “Redandblack” from the “8iVFBv2” data set [17] are
used. They represent full human bodies with different levels
of attribute complexity and possess from 700K to 1M points.
Here, T = 30 frames uniformly distributed over time are
evaluated. For partitioning, the number of centers is set to
k = 1500. The attributes are converted to the Y, U, V
color space and are then processed independently by the
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Fig. 4: Rate-quality curves comparing baseline [12] with λ = 0 to proposed partitioning scheme with λ > 0 with either
deactivated (I = 0) or activated (I = 50) proposed refinement algorithm.
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Fig. 5: Convergence of proposed refinement algorithm on
“Loot” sequence, frame 1000 with λ = 0.3.

GFT. The resulting coefficients are uniformly quantized using
quantization step sizes q ∈ [1, 64], and entropy-coded using
adaptive run-length Golomb-Rice (RLGR) coding [18]. The
partitioning centers are also uniformly quantized with a fixed
step size qcenters = 10 and entropy-coded using RLGR as well.
Note that Y, U, V are coded independently. To measure the
quality of the decoded point clouds, the peak signal-to-noise
ratio (PSNR) of the Y component is calculated as

PSNR-Y = −10 log10

(
1

T

T∑
t=1

∥Yt − Ỹt∥22
2552Nt

)
(7)

where Nt is the number of points present in the t-th frame, Yt

and Ỹt are the original and decoded Y component of frame t
respectively.

A. Centers Refinement

Fig. 5 shows the convergence behaviour of the refinement
algorithm depending on the weights chosen for updating the
centers. The weights are either computed with respect to (5)
( ) or set to αj = 1 ( ). Distance functions between data
points and cluster centers on both geometry and attributes are
shown, whereas intermediate centers for the attributes were
calculated as cAj = 1

|Pj |
∑

i∈Pj
ai with Pj containing all

points belonging to partition j given by the decoder labels
li = j. Both variants yield in a decreasing geometry distance

as shown in Fig. 5a. However, the attribute distance diverges
when weights αj = 1 are used, whereas the weight update (5)
is able to decrease the attribute distances as demonstrated in
Fig. 5b. In summary, calculating the geometry centers as a
weighted mean, with attribute-dependent weights, results in
partitions at the decoder that have smoother attributes.

B. Attribute-aware partitioning

By setting λ = 0, the attributes are ignored when parti-
tioning the pointcloud, and no additional information is sent
to the decoder, using only the geometry for clustering. This
makes the partioning comparable to [12] and provides us with
a baseline method ( on Fig. 4).

Since the centers are provided to the decoder as side
information in our approach, and because their size are in-
dependent from the quantization step size q used to compress
the attributes coefficients, they constitute, for a given qcenters, a
constant overhead at any rate range. This makes them represent
a bigger proportion of the total bitstream size especially at
lower bitrates. This can be seen in Fig. 4, where the curve
for λ = 0 shows better performance for low bitrate ranges.
However, once the mid and high-bitrate points are reached,
having λ ̸= 0 provides gains that are able to offset
the induced cost of the side information. Additionally using
the refinement algorithm improves the compression even
further.

These results are summarized again in Table I in terms of
Bjøntegaard Delta (BD) rate changes [19]2 with respect to
λ = 0. For all sequences, values are given for low, mid and
high rate intervals using λ = 0.3 with either the refinement
algorithm disabled (I = 0) or enabled with I ∈ {10, 50}. It
can be seen, that almost no improvement could be achieved
at lower bitrate ranges. However, compression gains ranging
from 1.16% to 3.97% can be observed for the more complex
“Longdress” sequence in the mid and higher bitrates. On the
more simple “Loot” sequence, compression gains from 0.71%
up to 3.82% are attained for mid and higher bitrates. For the

2The two rate-PSNR curves to be compared are interpolated with a
piecewise cubic interpolation scheme.
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TABLE I: BD rate changes in % with respect to λ = 0. Low: q ∈ [24, 32, 64], Mid: q ∈ [8, 12, 16, 20], High: q ∈ [1, 2, 4].

Longdress Loot Soldier Redandblack Average

I Low Mid High All Low Mid High All Low Mid High All Low Mid High All All

0 0.81 -1.16 -1.94 -1.32 6.07 0.10 -2.40 -0.26 1.97 -1.88 -1.99 -1.39 3.29 -0.05 -1.47 -0.33 -0.83
10 -0.42 -2.18 -3.40 -2.62 5.13 -0.71 -3.27 -1.10 1.09 -2.23 -2.47 -1.89 1.56 -1.77 -3.24 -2.12 -1.93
50 -0.75 -2.63 -3.97 -3.14 4.83 -1.16 -3.82 -1.59 1.00 -2.43 -2.73 -2.11 0.98 -2.41 -3.81 -2.74 -2.39

other two sequences, similar results can be obtained. Note that
increasing the number of refinement iterations improves the
performance in all rate intervals for all sequences, yielding
in an average of 3.58% savings for high bitrates. Finally,
it is important to mention that the proposed algorithm is a
direct extension of [12]. Deciding wich λ to use can be easily
made dependent on the quantization step size q: For lower
bitrates, λ = 0 should be favored, whereas λ > 0 yields better
performance for higher bitrates. This could be also employed
as a rate-distortion-based decision.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a novel attribute-aware partitioning scheme for
point cloud attribute coding is presented. Better compression
is achieved by using both geometry and attribute information
for partitioning. This yields a more efficient representation
of the attributes in the Graph Fourier Transform domain,
thus increasing the overall compression performance. The side
information needed to assist the decoder with partitioning is
optimized at the encoder. The proposed method meets the state
of the art in terms of compression performance: On average,
the baseline method is outpeformed by 2.39% for all bitrates in
terms of Bjøntegaard Delta rate savings. At high bitrates, the
savings even reach 3.58%. Since the proposed work extends
the baseline, its gains at lower bitrates can be obtained by
adapting the steering parameter depending on the quantization
step size.

Several ideas could be explored in the future in order to
improve this work: Only k-means has been investigated as a
clustering algorithm where other methods could potentially
offer better partitioning. Regarding the centers refinement
algorithm, it would be worthwhile experimenting with other
distributions for obtaining the weights. And finally it would
be interesting to try to compress the centers themselves by
quantizing them coarser before transmission, which might be
advantageous at lower bitrate ranges.
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