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Abstract—A point cloud’s attributes constitutes most of its
information content. This is why their efficient compression is
of great importance when designing a compression scheme. In
this paper, the entropy coding stage of an existing compression
method is replaced using Context-based Adaptive Binary Arith-
metic Coding (CABAC), which is already largely used for video
compression applications. Additionally, the DC transform coef-
ficients are quantized with Differential Pulse Code Modulation
(DPCM), yielding better performance at lower bit rates. By using
predictive coding and coding techniques adapted to the signal’s
characteristics, Bjøntegaard Delta rate savings of up to 31.38%
are observable in comparison to previously used entropy coding
methods.

Index Terms—3D point cloud compression, color attributes,
Graph Fourier Transform, entropy coding, CABAC

I. INTRODUCTION

The number of real world applications that consume 3D
data, such as point clouds, as well as the availability of
3D capturing technology are both steadily increasing. In
their raw and uncompressed form, point clouds, because of
their irregular structure, are extremely data intensive. This
sparked interest in developing methods that enable the effi-
cient representation, storage and transmission of point clouds.
Point clouds are comprised of points that carry geometry
and optionally attribute data. Some methods compress the
point clouds’ geometry and attributes simultaneously, such
as novel neural network-based methods, e.g. [1]. However,
another kind of popular end-to-end point cloud compression
schemes transmits the geometry to the decoder and the at-
tribute data independently from one another. G-PCC [2], a
point cloud coding standard developed by the Moving Pictures
Expert Group (MPEG), decorrelates the attributes’ signal using
transform coding [3]. Other techniques used to derive an
efficient representation of the attributes are based on the Graph
Fourier Transform (GFT) [4], such as originally in [5], or more
recently as in [6] or [7].

The entropy coding of the resulting GFT coefficients has
been mostly realized using adaptive Run-Length Golomb-Rice
(RLGR) coding [8]. As an alternative, we consider the latest
variant of Context-based Adaptive Binary Arithmetic Coding
(CABAC), that was made available with the most recent video
standard Versatile Video Coding (VVC) [9]. We show that
changes to the entropy coding scheme can lead to improve-
ments that reduce the total necessary bitrate of the compression
pipeline. Furthermore, to enhance the compression efficiency
at lower bitrates, the GFT DC coefficients are quantized by

Differential Pulse Code Modulation (DPCM), which predicts
the current DC value given the previously coded one. This
paper extends [5] and [7] with the following contributions:

• The entropy coding of the quantized GFT coefficients is
conducted by Context-based Adaptive Binary Arithmetic
Coding (CABAC) [10], replacing RLGR.

• Quantization of the GFT DC coefficients using Differen-
tial Pulse Code Modulation (DPCM).

This paper is structured as follows: The existing point
cloud attribute coding methods are summarized in Section II.
CABAC and its recent improvements are presented in Sec-
tion III. Section IV explains in detail the new entropy coding
techniques that represent this paper’s contributions. Evaluation
experiments and finally conclusions are discussed in Section V
and VI, respectively.

II. ATTRIBUTE CODING USING GRAPH FOURIER
TRANSFORM

A point cloud consist of its geometry V and attributes A,
which are distributed over its collection of N points. In order
to use the Graph Fourier Transform (GFT), a set of points
needs to be transformed into a graph, from which we can
derive the GFT transformation matrix. This is computationally
expensive and thus not practicable for big graphs representing
an entire typical point cloud. This is why an input point
cloud is split into L blocks using one of various partitioning
techniques. In this work, k-means is used for partitioning, as
proposed by [7].

Each resulting partition, which contains Nl points and is
represented by its geometry Vl and attributes Al, is turned
into a graph Gl in the same manner as proposed in [5]. Given
U⊤, the GFT’s transform matrix, a signal embedded on G’s
nodes is projected to the GFT domain as

Cl = U⊤Al, (1)

where the signal represents here the attributes Al of a single
block. The GFT’s transform matrix U⊤ is computed given
Vl, as detailed in [11] and summarized in e.g. [5]. Using
this transform for each block, the attributes Al yield the GFT
coefficients Cl, which are then quantized as C̃l = Q(Cl), and
input to the entropy coding stage, detailed in Section IV. Note
that the GFT coefficients Cl of a given block l are comprised
of one DC coefficient cl,0 and one or more AC coefficients
cl,1...Nl

if the block possesses more than one point (Nl > 1).
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Fig. 1: Proposed point cloud attribute compression scheme with separate quantization of DC (cl,0) and AC (cl,i, i > 0)
coefficients. CABAC is used as the entropy coding method.

They follow a geometric distribution and so do the quantized
levels C̃l.

III. CONTEXT-BASED ADAPTIVE BINARY ARITHMETIC
CODING (CABAC)

In this section, Context-based Adaptive Binary Arithmetic
Coding (CABAC) [10] in its most recent version (as used in
VVC) is briefly summarized. For a more detailed discussion,
refer to e.g. [12]. As depicted in the entropy coding block in
Fig. 1, CABAC consists of four steps: First, integer symbols
are binarized, yielding binary codewords (sometimes referred
to as bin-strings). Second, given information extracted from
previously (de-)coded data, a probability model, also called
context, is assigned to each binary value (bin). The estimated
probability is then further used in the third step, the binary
arithmetic coding (BAC) engine. Alternatively, the context
modeling and BAC can be skipped for given bins by utilizing
the faster bypass mode, which codes them with fixed proba-
bility values of p = 0.5.

CABAC stems from Advanced Video Coding (AVC) [13]
and was used in the same variant in AVC’s successor High Ef-
ficiency Video Coding (HEVC) [14]. During the standardiza-
tion of VVC [9], some of the core functionality of CABAC was
further improved, namely the probability estimation for each
context model: While the CABAC variant for AVC and HEVC
uses a finite state machine to model the symbol probability,
the recent variant proposed for VVC utilizes two probability
estimators in parallel [12]. Both probability estimates are
arithmetically derived, using two different adaptation rates: α0

and α1 < α0, which allows for the simultaneous estimation of
both faster and slower varying probabilities respectively. Given
the two estimates, the final estimate is chosen as their average
value. This multi-hypothesis probability estimation procedure
is detailed in [15].

Binarization

Since the arithmetic engine of CABAC is restricted to code
only binary values, integer inputs are binarized in a first
step. Typical choices for binarization schemes are prefix-free
codes such as fixed-length (FL), truncated unary (TU), or
exponential-Golomb codes of order k (EG-k) [16]: The FL
binarization is the binary representation of the to-be-binarized
non-negative integer v with a fixed number of bits nFL. The
TU binarization of a non-negative integer v yields a sequence
of v ones and a terminating zero, which is omitted only for

the maximum value of v. The EG-k binarization consists of a
prefix and a suffix: The prefix value vp = ⌊log2

(
v/2k + 1

)
⌋

is encoded with a unary code, yielding np = vp +1 bits. The
suffix value vs = v + 2k (1− 2vp) is encoded with a fixed
length code of ns = vp + k bits.

Context Modeling

Context modeling exploits statistical dependencies between
the to-be-coded bin and previously coded data. Typically,
contexts are chosen depending on the position of each bin
in the bin-string, the position of the symbol, or the preceding
symbol’s value. Each context model is associated with two
probability estimates, which are continuously updated for each
coded bin. We refer to [10], [12] for further reading.

Last Significant Coefficient Position

Since coefficients at higher frequencies tend to be quantized
to zero, we adopt a coding technique from HEVC/VVC [12],
[16]. The position of the last significant coefficient of each
block is binarized and sent to the decoder. By doing so, the
transmission of the remaining non-significant coefficients can
be avoided, sparing bitrate. The last significant coefficient is
binarized and the corresponding context models are chosen the
same way as in [12].

IV. CODING SCHEME

This paper proposes the following changes with respect to
the baseline [7]:

• The GFT DC and AC coefficients of each block are
quantized separately. Quantization of the DC GFT coef-
ficients is carried out by utilizing Differential Pulse Code
Modulation (DPCM) [17].

• For efficient entropy coding of all elements (namely the
GFT DC and AC coefficients as well as the k-means
clusters), we propose to replace RLGR with CABAC.
We adapt both binarization and context modeling to the
statistics of the GFT coefficients and keep the third part
of CABAC, the arithmetic coding engine, untouched.

Differential Pulse Code Modulation

It can be assumed that points in neighboring blocks often
contain similar attributes, which yields similar DC values for
neighboring blocks. This dependency is utilized for efficient
transmission of the GFT DC coefficients by means of a simple
version of Differential Pulse Code Modulation (DPCM) [17]
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Fig. 2: DPCM scheme for quantization of DC coefficients with
quantization denoted with “Q” and prediction with “P”.

presented in Fig. 2. The DPCM encoder contains the decoder
(closed loop structure), where the previous output values c̃l,0
are fed into a prediction block, yielding prediction estimates
ĉl,0. To account for cases where the prediction fails, the
encoder calculates the prediction error as el,0 = cl,0 − ĉl,0.
This error is quantized and transmitted to the decoder, where it
is added to the prediction estimates, yielding the output values
c̃l,0 = ĉl,0+ ẽl,0. Since it is the mean values of each block that
are comparable to one another, the prediction of the decoded
DC value of current block l is selected as a scaled version of
the DC value of previous block l − 1: ĉl,0 =

√
Nl

Nl−1
c̃l−1,0.

In [7], the scan-order of the cluster centers, which dictates
the order of the underlying partitions, is determined using
Morton space-filling curves (also known as z-order curves).
Since the DC coefficient of the previously coded partition
is used for prediction, we propose to replace Morton by
Hilbert space-filling curves, which were shown to best preserve
the spatial correlations of a point cloud’s attributes [18]. By
using both DPCM and Hilbert curves, it is expected that the
DPCM coding loop will have access to a better DC coefficient
prediction and thus provide higher coding efficiency.

Binarization

With CABAC being a binary encoder, our symbols need
to be binarized before they can be encoded. In this paper,
truncated unary (TU) and exponential-Golomb codes of order
k (EG-k) are evaluated. Note that TU and EG-k are only
able to encode non-negative integers. Since the levels C̃ to-
be-encoded can be negative, they are transformed as follows:

c̃i ←

{
2c̃i − 1 if c̃i > 0,
−2c̃i if c̃i ≤ 0,

(2)

mapping positive and negative levels to odd and even values
respectively. Note that the very probable level c̃i = 0 is
assigned a bin-string of the shortest length of one.

Context Modeling

Our context modeling strategies are employed for both the
bin-strings resulting from TU-binarization and for the prefix
part of EG-k generated codes (which is also a TU-coded
bin-string). EG-k suffixes are coded using CABAC’s bypass
engine. Binarization of symbol c̃i at position i in its block
yields bins bi,n at position n in the corresponding bin-string.
In context modeling, each bin bi,n is assigned a unique context

TABLE I: Context selection based on bin & symbol positions.

i
Context identifiers ctxi,n

n < nR n ≥ nR

i < i0 n+ nR + 1 2nR + 1
i0 ≤ i < i1 n+ 2(nR + 1) 3nR + 2
i1 ≤ i < i2 n+ 3(nR + 1) 4nR + 3
i2 ≤ i n nR

identifier ctxi,n. In this paper, we evaluate three different
context modeling approaches as follows:

1) “Binary Arithmetic Coding” (BAC): Coding every bin
bi,n with the same context, which reduces CABAC to a
binary arithmetic coder without information-dependent
context modeling: ctxi,n = 0.

2) “Bin Position” (BP): Coding bi,n depending on its
position n in the bin-string. To limit the number of
contexts, we clip n by nR:

ctxi,n =

{
n if n < nR,
nR else.

(3)

This results in a total of nR + 1 contexts. Note that for
nR = 0, this context model becomes equivalent to BAC.

3) “Bin & Symbol Position” (BPSP): Selecting ctxi,n
depending on bin position n as well as i, the position of
the binarized symbol c̃i inside its block. Four different
intervals are defined with edge values i0 < i1, < i2, as
described in Table I. In total, 4 (nR + 1) contexts are
used. Note that for i0 = i1 = i2 = 0, this context model
becomes equivalent to BP.

V. EVALUATION

The “8iVFBv2” data set [19] is used to verify the efficiency
of the coding scheme. It is comprised of four point cloud
sequences “Loot”, “Longdress”, “Soldier” and “Redandblack”
which present varying degrees of color complexity. Each point
cloud contains 800K points on average, and T = 30 frames
chosen uniformly over the sequences are used for evaluation.

Prior to entropy coding, the GFT coefficients C are derived
using the same method and parameters as in [7] i.e the
attributes are converted to the YUV color space and parti-
tioning is performed using k = 1500 centers. Moreover, the
GFT coefficients and partition centers are uniformly quantized
using quantization step sizes q ∈ [1, 64] and a fixed step size
qcenters = 10, respectively.

For our evaluations, the coefficients of each block are
concatenated component-wise and are then fed to the CABAC
coder sequentially in one pass. In order to provide a fair
comparison, [7]’s RLGR-based entropy coding scheme, which
codes the Y, U and V components separately from one another,
has been modified to adopt the described coding method. This
will constitute our baseline method.

Preliminary Experiments

As a first experiment, RLGR is kept as the encoding
method and only the quantization scheme for the GFT DC



TABLE II: BD rate changes in % with respect to [7]. BAC (nR = 0) or BP (nR > 0) context models.

Loot Longdress Red&black Soldier Average

nR TU EG-0 EG-1 TU EG-0 EG-1 TU EG-0 EG-1 TU EG-0 EG-1 TU EG-0 EG-1

0 -30.22 -25.95 -10.47 -21.67 -15.39 -1.85 -33.02 -28.47 -14.48 -24.05 -18.45 -2.89 -27.24 -22.06 -7.42
2 -31.70 -31.75 -13.95 -23.20 -23.04 -6.77 -34.27 -34.23 -17.97 -25.60 -25.52 -7.31 -28.69 -28.64 -11.50
4 -31.67 -32.13 -14.09 -23.15 -23.85 -7.10 -34.20 -34.65 -18.13 -25.53 -26.16 -7.55 -28.64 -29.20 -11.72
6 -31.56 -32.16 -14.09 -23.02 -23.94 -7.12 -34.07 -34.70 -18.15 -25.39 -26.23 -7.57 -28.51 -29.26 -11.73
8 -31.49 -32.17 -14.09 -22.93 -23.95 -7.13 -33.98 -34.71 -18.15 -25.29 -26.23 -7.57 -28.42 -29.26 -11.73

10 -31.44 -32.17 -14.09 -22.86 -23.95 -7.13 -33.92 -34.71 -18.15 -25.22 -26.23 -7.57 -28.36 -29.26 -11.73

TABLE III: BD rate changes in % with respect to [7].
BPSP context model with EG-0.

nR Loot Longdress Red&black Soldier Average

0 -26.28 -15.70 -28.77 -18.81 -22.39
2 -33.50 -24.79 -35.86 -27.41 -30.39
4 -34.12 -25.97 -36.56 -28.41 -31.26
6 -34.18 -26.12 -36.64 -28.54 -31.37
8 -34.18 -26.13 -36.65 -28.55 -31.38

10 -34.18 -26.13 -36.65 -28.55 -31.38

coefficients is replaced with DPCM. As a useful addition,
the Morton-ordering is replaced by Hilbert-ordering. While
the use of Hilbert space-filling curves over Morton curves
provides limited gains of 0.04%, DPCM is able to substantially
improve the coding efficiency. These results are enhanced
when the two techniques are combined yielding 1.76% of
bitrate reduction. This indeed shows that subsequent blocks,
the order of which is improved by using Hilbert curves, carry
redundant information regarding their DC attribute values.

When replacing RLGR with CABAC, the quantized error
signal of the DC coefficients and the partition centers are bina-
rized using EG-0 and entropy-coded with a context model that
assigns different contexts depending on the bin’s position and
the bin of the previously coded symbol at the same position in
the bin-string [20]. This context model did not perform well
for the AC coefficients and is hence not considered here. The
subsequent experiments focus on coding the AC coefficients
since they constitute the majority of the bit stream.

Moreover, it has been determined that the highest values for
CABAC’s adaptation rates of the context probability estimators
α0 = 2−2, α1 = 2−5, which provide the fastest adaptation,
yield the best results and are thus, later used for all contexts.

Binarization

Truncated Unary (TU) and Exponential Golomb Codes of
order k ∈ {0, 1} are tested for varying values of nR while
using the context model BP. Table II shows that substantial
gains can be obtained for every binarization scheme. Expo-
nential Golomb with values of k higher than 0 is not able to
compete since symbols representing low amplitude values are
not as efficiently represented. Context model BAC (nR = 0)
provides already significant gains on its own, which are best
when using the TU binarization, yielding 27.24% BD-rate
savings. These results are further improved when increasing
nR, where TU becomes optimal for nR = 2. However, EG-0 is

able to achieve savings of up to 29.26% on average for nR = 6
and is thus chosen for subsequent experiments. Larger values
nR > 6 only increase the complexity of the context model
while providing no benefits.

It is worth noting that these results were obtained while
coding the position of the last significant coefficient per block
(as described in Section III). Turning this feature off worsens
the results across the board e.g. EG-0 with nR = 6, only
provides 25.62% BD rate savings, which is a loss of 3.64%.

Context Modeling

The BPSP context model, which uses the interval bound-
aries i0, i1 and i2 is investigated. The logarithmically spaced
values of i0 = 10, i1 = 50, i2 = 100 were experimentally
found to be suitable. BPSP assigns a different set of (nR + 1)
contexts to the bins of a coefficient c̃i depending on its position
i inside the block, achieving a kind of frequency bining. This
is beneficial, as an additional 2.12% rate savings are achieved
for nR = 8, as shown in Table III. This shows that subsequent
blocks exhibit statistical dependencies over their frequency
components and that CABAC is able to exploit them.

VI. CONCLUSION

An efficient adaptive entropy coding scheme, aimed at graph
transform coefficients representing point cloud attributes, is
presented. The point cloud blocks are first ordered using
Hilbert space-filling curves, which increases the spatial de-
pendencies of subsequent blocks. Predictive coding of the DC
coefficients is then performed using DPCM and the resulting
error signal is entropy coded using CABAC. A combination
of binarizations and context modeling techniques has been
investigated to code the AC coefficients using CABAC as well.
These results have been compared to and then integrated into
the baseline method, in order to provide an efficient end-to-
end compression scheme. On average, Bjøntegaard Delta rate
saving of 31.38% could be achieved.

However, some areas could be further researched: As done
in the VVC standard, the adaptation rates and the initial prob-
abilities per-context could be individually optimized. Context
modeling strategies that depend on previously coded symbol
values should be further investigated as well.
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