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Abstract—Nonnegative matrix factorization (NMF) is often
used for source separation of audio signals. In most of these
algorithms, the initialization step of the NMF, which has a strong
impact on the separation performance, is based on random values
or deterministic methods such as singular value decomposition
(SVD). Another deterministic initialization approach, which is
used e.g. for score-informed source separation algorithms, makes
use of synthesized magnitude spectra of harmonic notes. It was
shown that this semantic method leads to good separation results
in blind source separation (BSS) as well; not only for harmonic
but also for percussive mixtures with some harmonic components.
In this paper, we present an extension to the semantic approach
to enhance the separation quality for arbitrary audio mixtures.
We evaluate this extension in a BSS scenario and compare it to
other initialization schemes.

I. INTRODUCTION

Nonnegative matrix factorization (NMF) based algorithms
are frequently used for audio source separation. The NMF
initialization is an important part of these algorithms as it
influences the separation quality to a great extent. Further-
more, it can be used for adaptation of prior information
(e.g. [1], [2], [3]). There exist different NMF initialization
schemes based on random values or data-driven schemes such
as the singular value decomposition (SVD) [4].

Other deterministic methods try to model the data’s seman-
tics: For example, [5] uses real piano notes for initializing
the NMF for automatic music transcription. Synthetic initial-
izations with sparse comb structures for harmonic notes and
additional noise or wideband components to model percussive
components are employed for e.g. score-informed [3], [6] or
guided source separation [2] as well as for multiple pitch
estimation [7].

To our knowledge, there exist only rather simple wideband
or noise models for synthetic initialization of unpitched note
spectra which are not as accurate as harmonic models for
pitched note spectra. On the other hand, these simple models
increase the separation quality of e.g. score-informed separa-
tion methods [3], [6] due to the fact, that these methods are
able to estimate the onset time of each percussive event by
evaluating the mixture’s score.

In this paper, we try to combine semantic harmonic ini-
tialization schemes to model pitched components with data-
driven initialization schemes to take all components into
account, which cannot be modelled correctly by the harmonic

scheme. We evaluate this novel approach as initialization for
a basic NMF-based blind source separation (BSS) algorithm
as proposed in [8]. Note, that the application of our approach
is not limited to BSS.

The paper is structured as follows: In Section II, the BSS
algorithm and in Section III a synthetic harmonic initialization
scheme are summarized. Our novel extension to that scheme
is introduced in Section IV and evaluated in Section V.
Section VI concludes this paper and gives an outlook on future
work.

II. BLIND AUDIO SOURCE SEPARATION WITH BETA-NMF

The basic blind audio source separation algorithm is shown
in Figure 1 and described in detail in [8]:

The time-domain mixture x =
∑M

m=1 sm consisting of
M sources sm is transformed to the time-frequency domain
by the short-time Fourier transform (STFT). In the following
dimension reduction step (DR), the spectral dimension of the
mixture amplitude spectrogram is reduced to suppress vibrato
effects and to speed up the subsequent processing steps. The
dimension reduction is obtained by filtering the spectrogram
with a mel-filterbank which consists of K triangular filters
whose central frequencies are spaced linearly on the mel scale
fmel = 1127 log (1 + fHz/700).

The dimension-reduced magnitude spectrogram X ∈ RK×T
+

is factorized by the NMF into I components X ≈ X̃ = BGT

with the spectral basis matrix B ∈ RK×I
+ , temporal gain

matrix G ∈ RT×I
+ and number of time frames T . I is a

user defined parameter and should be chosen much smaller
than both K and T but larger than the number of sources
M . The NMF variant used here denoted as β-NMF estimates
B and G by evaluating multiplicative update rules which
are derived by minimizing the β-Divergence [8]. Common
choices in the literature for values of β for using β-NMF for
audio source separation are β = 0 (Itakura-Saito distance) or
β = 1 (Kullback-Leibler Divergence). The separation quality
strongly depends on the initial matrices B0 and G0 which are
computed in an initialization step in advance.

For synthesis, fine structure and phase information of the
components are obtained by Wiener-like filtering with the
original complex mixture spectrogram: First, the spectral di-
mension of B is transformed to the linear frequency domain by
an inverse dimension reduction step. Afterwards, a so-called
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Fig. 1. Flowgraph of the BSS algorithm.

time-frequency mask is determined for each NMF component
depending on the corresponding spectral basis and the tempo-
ral gain vectors. The actual Wiener-filtering is conducted by
multiplying the complex mixture spectrogram with the mask
corresponding to each component. The resulting spectrogram
is finally transformed to time domain by an inverse STFT [8].

In the grouping step, the components are grouped together
to form M estimated sources s̃m since the number of NMF
components I is usually larger than M . In this paper, we
use a non-blind grouping procedure with knowledge of the
original sources to rule out possible errors by a blind grouping
step. This procedure yields the grouping assignment which
maximizes the overall separation quality [8].

III. SEMANTIC HARMONIC INITIALIZATION

As discussed in Section I, several algorithms use a syn-
thetic semantic initialization (SI) for the NMF basis matrix
consisting of harmonic spectra. In this paper, we follow the
procedure proposed in [8] to obtain the initial basis matrix
B0 by synthesizing the spectra of I0 = 88 piano notes: Each
note with fundamental frequency f(i) = 27.5 (2

1
12 )i−1 Hz is

calculated at first in time domain consisting of N = 20 partials
and stored in a matrix P ∈ RK0×I0

P(t, i) =

N∑
n=1

cos

(
2π (t− 1)

n f(i)

Fs

)
Catt(n f(i)) , (1)

with 1 ≤ t ≤ K0. Factor Catt depending on the partial’s
frequency n f(i) ensures an attenuation of 3 dB per octave,
Fs denotes the sampling frequency and K0 the length of the
STFT window.

Afterwards, the time-domain piano notes P are transformed
to the mel domain by applying the windowed Fourier trans-
form and the mel filterbank consecutively to each column of
P. This procedure mimics the transformation of the mixture
in time domain x to the mel-filtered spectrogram X (see Sec-
tion II). As a last step, each mel-domain piano note spectrum
is normalized to unit energy and stored in B0 ∈ RK×I0 .

The gain matrix G0 ∈ RT×I0 is then initialized as

G0 = XTB0 or G0(t, i) =
∑
k

X(k, t)B0(k, i) (2)

which can be interpreted as a correlation at lag zero between
the ith piano note spectrum (ith column of B0) and each
mixture frame at time bin t (tth column of X). Therefore,
G0 gives information about the similarity (defined by high
correlation) of the ith spectrum and the frame at time bin t.

As Eq. 2 is computed in the mel domain, possible errors due
to tuning differences between the synthesized notes and the
mixture frames or vibrato effects are reduced.

To decrease the number of components from I0 = 88 to
the user-specified I , the component with the lowest energy
E(i) =

[∑
k B(k, i)2

] [∑
t G(t, i)2

]
is discarded after each of

the first I0−I NMF iteration steps until the condition I0 = I is
reached [8]. Afterwards, the NMF proceeds unmodified. This
modification is a disadvantage as the initialization requires the
NMF algorithm to be changed. However, this is only a subtle
change compared to the differences between the NMF and
more complex algorithms to reduce the number of components
automatically such as [9].

IV. DATA-DRIVEN EXTENSION

The semantic initialization (SI) described in the previous
section assumes a harmonic structure of the mixture’s spectro-
gram X. Instead of appending fixed wide-band spectra to deal
with non-harmonic components, we want to gain information
out of the mixture itself. Hence, we combine the SI with a data-
driven initialization. Figure 2 shows the proposed procedure:
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Fig. 2. Flowgraph of the proposed method.

Based on the initial gain matrix G0 calculated by SI, all
the frames of the spectrogram X which are not properly
represented by the harmonic spectra in B0 are detected and
stored in a matrix Xdet

1. After detecting these frames, a
separation method is used to extract Nnh new basis vectors
Bnh which are simply appended to B0 calculated by SI
to form a new initial basis matrix. Nnh is a user-defined
parameter. The corresponding gain vectors are obtained by
evaluating Eq. (2) and the number of initial NMF components
is updated to I0 = 88 +Nnh.

1In the following, we denote all events, which are not properly represented
by B0 as “non-harmonic”.



A. Detection of Non-harmonic Frames

Figure 3 shows the mixture spectrogram X, the spectral
basis matrix B0 and the (transposed) initial gain matrix
GT

0 obtained by the semantic initialization for an exemplary
mixture of a guitar and a drum recording. As shown in Fig. 3c,
the tth column of GT

0 gives a good indication if frame t of
the spectrogram X can be represented by the ith column of
B0 as Eq. (2) evaluates the correlation at lag zero between
these two vectors. For harmonic notes in frame t of X, most
of the energy in the tth column of GT

0 is concentrated at bin i
corresponding to the ith piano note spectrum (ith column of
B0) with similar fundamental frequency and at the harmonics
of the note. Regarding non-harmonic events, a wide range
of spectra of B0 are necessary to represent frame t. In the
following, we discuss several methods to detect non-harmonic
frames which are combined to a matrix Xdet.

1) Spectral Flatness: A simple measure for harmonicity is
the spectral flatness as non-harmonic spectra tend to be more
flat than harmonic ones. In [10], a robust entropy based variant
dsf(t) was proposed:

log2 (dsf(t) + 1) =

− 1

log2(I0)

∑
i

Ĝ0(t, i) log2

(
Ĝ0(t, i)

)
(3)

with Ĝ0(t, i) = G0(t, i)/
[∑

j G0(t, j)
]
. The values of dsf(t)

are restricted to 0 ≤ dsf(t) ≤ 1. Note that we evaluate
the flatness of each column of the temporal gain matrix GT

0

instead of the corresponding spectral basis vectors or columns
of X as we try to detect the frames, for which a wide range
of piano notes was selected. As this measure is called spectral
flatness in the literature, we adopt this name in the following.

Non-harmonic frames are detected with a threshold-decision
dsf(t) > αsf . In Figure 3d, dsf(t) is exemplary depicted.

2) Correlation: We propose another detection function for
non-harmonic frames which evaluates the autocorrelation of
each column t of GT

0

C(j, t) =
1∑I0

i=1 G0(t, i)2

I0∑
i=1

G0(t, i)G0(t, i− j + 1) (4)

with 1 ≤ j ≤ I0 and C(j, t) being normalized such that
C(j = 1, t) = 1. As shown in Figure 3f, the autocorrelation
C discards the pitch-information itself but provides a good
measure to discriminate harmonic from non-harmonic notes:
For most harmonic components, the corresponding column t
of C features a strong peak at lag joct = 13 which corresponds
to one octave. For non-harmonic notes, the autocorrelation
function does not show this but a rather smeared structure.
The detection function itself evaluates the height of the peak
at lag joct

dc(t) =
1

2

[
C(joct, t)

C(joct − j0, t)
+

C(joct, t)

C(joct + j0, t)

]
(5)

with j0 = 2 to take small smearing effects in C(j, t) into
account.

Similar to the spectral flatness detection function Eq. (3), we
select non-negative frames with thresholding Eq. (5) dc(t) <
αc. In Figure 3e, dc(t) and αc are shown for the exemplary
guitar-drum mixture.

B. Separation Step

The detected non-harmonic frames Xdet could still contain
some harmonic components if a non-harmonic and a harmonic
source are active at the same time frame t or in case of a
faulty detection. Besides, multiple non-harmonic sources (such
as different percussive instruments or a percussive instrument
and noise, for example) could be active as well.

Therefore, we propose to separate Xdet into Nnh additional
basis functions Bnh which are then simply appended to B0. As
a separation method, we chose the nonnegative variant of the
SVD (NNDSVD) which was introduced in [4]. This algorithm
evaluates the SVD, selects the Nnh highest singular values
and cancels out iteratively negative components in the output
matrices of the SVD. Another possible method would be a
random-initialized NMF. In this paper, however, we focus on
deterministic initialization methods.

V. EVALUATION

A. Setup

For evaluation of the extended semantic initialization (ESI),
we performed source separation as summarized in Section II
on a database of 60 audio sources (harmonic, percussive,
vocals, speech and noise signals) sampled at Fs = 44 100Hz
as described in [8]. We evaluated mixtures consisting of
M = 2 sources, resulting in a total of 1770 mixtures.

Regarding the STFT, we chose a window size corresponding
to 93ms and a hop size of 23ms. The mel-filtering was done
with K = 400 filters. We set the number of NMF components
to I = 20 and performed 300 NMF iterations. We chose β = 0
as it is more robust regarding loudness differences between the
sources [8].

The parameters for thresholding the detection functions
were chosen as follows: For the spectral flatness function
dsf(t), we chose eleven different values in the interval
αsf ∈ [0.8, 0.9]. For the correlation-based detection dc(t), we
chose eleven values in the interval αc ∈ [1, 1.1]. We also
evaluated the case, where all frames are detected by choosing
αsf = 0. For the separation step, the number of additional
non-harmonic components Bnh calculated by the NNDSVD
was chosen to Nnh ∈ {2, 3, 5}.

As quality measures we chose the signal-to-distortion ratio
(SDR), the signal-to-interference ratio (SIR) and the signal-
to-artifact ratio (SAR) which we calculated by using the
BSSEVAL toolbox [11] and averaged over all mixtures.

B. Results

We evaluated the so-called oracle estimator [12] which
yields an upper bound for separation algorithms which use the
Wiener-like filtering for synthesis (refer to Section II) on the
database described in Section V-A as well as the harmonic
semantic initialization scheme (SI) described in Section III
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(b) Initial spectral basis matrix B0.
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(c) Initial temporal gain matrix GT
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Fig. 3. Mel-filtered mixture spectrogram X, initial spectral basis matrix B0 and temporal gain matrix GT
0 obtained by the basic semantic initialization,

spectral flatness and correlation-based detection functions dsf(t) and dc(t) as well as the correlation matrix C for an exemplary guitar-drum mixture.

and the non-negative SVD variant NNDSVD summarized in
Section IV-B as it is used for separation of the detected non-
harmonic frames2.

To compare our method to simplistic models for percussive
note spectra, we appended these spectra to B0 obtained by
the semantic initialization scheme (SI): We added either a
constant spectrum (SI-1, similar to [6]) or Nnh mel-filters (SI-
WB) (similar to [2], [7]). We also evaluated the combination
of SI with additional random (absolute Gaussian distributed)
components. This procedure was outperformed by SI-WB in
our simulations and is therefore not considered here.

TABLE I
SDR, SIR AND SAR RESULTS IN dB FOR REFERENCE METHODS: ORACLE
ESTIMATOR (ORACLE), SEMANTIC INITIALIZATION (SI), NON-NEGATIVE

SVD (NNDSVD) AND SEMANTIC INITIALIZATION WITH ONE EXTRA
COMPONENT CONSISTING OF A CONSTANT SPECTRUM (SI-1).

Oracle SI NNDSVD SI-1

SDR [dB] 20.35 11.75 10.52 11.88
SIR [dB] 28.01 18.63 17.26 18.74

SAR [dB] 22.16 14.17 12.87 14.38

Table I shows the averaged results over all 1770 mixtures

2In [13], we evaluated SVD-based initialization schemes and compared
them to SI on the same database as described in Section V-A. SI outperformed
all other data-driven methods as well as a random initialization with absolute
values of Gaussian random values for B0 and G0. Therefore, we consider
here only SI as a reference and refer to [13] for the evaluation of the SVD-
based methods.

for the following reference methods: The oracle estimator, the
semantic initialization without (SI) and with an extra constant
spectrum (SI-1) as well as initialization with the NNDSVD.
Appending an additional constant spectrum to the harmonic
notes considered in SI increases the separation performance
significantly. The NNDSVD is clearly outperformed by the
other methods.

Regarding ESI, non-harmonic frames were detected with
either the spectral flatness (ESI-SF) or the correlation (ESI-
C) based detection function described in Section IV-A with
thresholding values given in Section V-A. The detected non-
harmonic frames were separated with the NNDSVD into Nnh

additional basis vectors as discussed in Section IV-B. We
performed simulations for all Nnh ∈ {2, 3, 5} and for all
threshold values and selected the thresholds for each detection
function which resulted in the best SDR value averaged over
all values of Nnh: This procedure yields αsf = 0.86 for ESI-SF
and αc = 1.05 for ESI-C. We also evaluated the case where all
time frames of the mixture spectrogram are detected (ESI-all)
by setting αsf = 0.

Table II shows results for initialization with additional mel-
filters (SI-WB) as well as results for the proposed extended se-
mantic initialization (ESI) for different numbers of additional
basis vectors Nnh averaged over all 1770 mixtures:

• It becomes clear, that all extensions of the semantic
initialization outperform the basic variant SI (see Ta-
ble I). Our proposed data-driven extension improves the
separation quality of SI significantly: ESI-SF yields an



TABLE II
SDR, SIR AND SAR RESULTS IN dB FOR SEMANTIC INITIALIZATION (SI) WITH Nnh ADDITIONAL WIDEBAND SPECTRA (SI-WB) AND THE PROPOSED

EXTENDED SI (ESI) WITH SPECTRAL FLATNESS (ESI-SF AND αsf = 0.86) AND CORRELATION (ESI-C AND αc = 1.05) BASED DETECTION FUNCTIONS.
ESI-ALL DENOTES THE CASE WHERE ALL FRAMES WERE DETECTED (αsf = 0). REGARDING ESI, THE DETECTED FRAMES WERE SEPARATED WITH THE

NNDSVD WITH DIFFERENT NUMBERS OF ADDITIONAL NON-HARMONIC COMPONENTS Nnh .

SDR [dB] SIR [dB] SAR [dB]

Nnh SI-WB ESI-SF ESI-C ESI-all SI-WB ESI-SF ESI-C ESI-all SI-WB ESI-SF ESI-C ESI-all

2 11.88 11.91 11.91 11.84 18.77 18.83 18.77 18.76 14.37 14.33 14.35 14.31
3 11.94 12.00 11.91 11.92 18.86 18.89 18.77 18.78 14.40 14.44 14.38 14.40
5 11.93 11.97 12.02 11.87 18.74 18.83 18.92 18.70 14.36 14.46 14.50 14.38

SDR increase of +0.25 dB for Nnh = 3, whereas ESI-C
outperforms SI by +0.27 dB for Nnh = 5.

• Both variants of ESI outperform SI-WB for all Nnh as
well, although the increase of the quality measures is only
significant for ESI-C with Nnh = 5: The SDR increases
by +0.09 dB and the SAR by +0.14 dB.

• Comparing ESI-SF and ESI-C, it can be noted that ESI-
SF performs better for Nnh ∈ {2, 3} whereas ESI-C
outperforms ESI-SF only for Nnh = 5.

• Regarding ESI-all, all frames were detected which means
that the complete spectrogram X was separated into Nnh

components and appended to B0. This procedure results
in worse separation results compared to detecting non-
harmonic frames which clearly motivates the detection
step.

C. Evaluation of Optimal Parameters

In the previous section, we optimized the parameters of
our proposed initialization method ESI by simulating over
different parameters regarding the threshold values αsf , αc and
the number of separated components Nnh.

In this section, we used a different database for evaluation of
the robustness of choice of parameters: The second database3

consists of 26 recordings of harmonic and percussive instru-
ments as well as vocals, that were extracted from the QUASI
database [15]. Combining M = 2 sources results in a total
of 325 mixtures. Oracle estimation yields an SDR value of
30.10 dB, an SIR of 20.94 dB and an SAR of 22.10 dB.

We evaluated SI, SI-WB and ESI with the parameters
optimized on the first testset (refer to Table II): For ESI-SF,
we chose the two parameters to be (αsf , Nnh) = (0.86, 3), for
ESI-C (αc, Nnh) = (1.05, 5) and for SI-WB Nnh = 5.

TABLE III
SDR, SIR AND SAR RESULTS IN dB FOR SI, SI-WB, ESI-SF AND ESI-C

WITH OPTIMAL PARAMETERS.

SI SI-WB ESI-SF ESI-C

SDR [dB] 13.30 13.37 13.47 13.32
SIR [dB] 20.37 20.44 20.65 20.38

SAR [dB] 15.50 15.59 15.48 15.45

3We used the same database previously in [14].

Table III shows the corresponding separation results aver-
aged over all mixtures:

• SI-WB gives better separation results than SI as it was
observed already in Section V-B for the first database.

• ESI-SF clearly outperforms both SI-WB regarding SDR
(+0.13 dB) and SIR (+0.25 dB) while SAR slightly
decreases (−0.09 dB).

• ESI-C results in similar quality as SI for all measures.

This motivates the choice of the spectral flatness detection
function as the optimal parameter choice seems to be more
robust compared to ESI-C and ESI-C outperformes ESI-SF
only by a small percentage on the first testset.

VI. SUMMARY

The goal of this preliminary work was to introduce a novel
approach to initialize the basis matrix of the nonnegative
matrix factorization by combining a semantic initialization
scheme (SI) based on synthesized harmonic spectra and a data-
driven initialization. Our method generates additional basis
vectors by taking non-harmonic frames of the mixture into
account. We proposed a novel detection method for non-
harmonic frames and compared it to the spectral flatness
measure.

We evaluated this scheme as initialization for a basic NMF-
based blind source separation algorithm and compared it to
other initialization approaches, e.g. SI and a combination of
SI with wideband spectra. Our algorithm outperforms both
approaches and is open for future work:

• More detailed evaluation of the non-harmonicity detec-
tion functions or possible combinations on data with
ground truth.

• Analysis of the appended non-harmonic frames and the
semantic piano note basis spectra to cancel out remaining
harmonic components of the appended frames.

• Incorporation of a novel SVD-based initialization pro-
posed in [13], which calculates the SVD on the complex
output of the STFT directly and shows very good separa-
tion results; requires dealing with the phase information
of the detected STFT frames.

• Computation of more general models such as a Gaussian
mixture models at run-time instead of appending the
separated detected frames directly.
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