	[image:][image:]Joint Video Experts Team (JVET)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
10th Meeting: San Diego, US, 10–20 Apr. 2018
	Document: JVET-J0023-v1

	Title:
	Description of SDR and 360° video coding technology proposal by RWTH Aachen University

	Status:
	Input document to JVET

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Name(s)
Max Bläser
Johannes Sauer
Mathias Wien
	
Tel:
Email:
	
+49241 80 27671
{blaeser, sauer, wien}@ient.rwth-aachen.de

	Source:
	RWTH Aachen University

[bookmark: _Toc510328144]Abstract
The proposal is composed of two parts: SDR specific coding tools and 360° video specific coding tools. The tools have been implemented in JEM and are presented relative to JEM 7.0 each, but SDR and 360° tools have not been run in combination in the submission.
For SDR, geometric partitioning is applied to rectangular blocks for prediction and transform coding. The partitioning is signalled in the bitstream based on rate-distortion decisions in the encoder. The coding is based on a combination of pre-defined partitioning templates, temporal and spatial prediction of the partitioning, and optional refinement coding. Each partitioned segment can utilize motion compensated prediction or intra-prediction. The boundary of the predicted segments is smoothed before the residual is added. For residual coding, the encoder can select between the regular rectangular DCT for the whole block and the Shape Adaptive DCT for each segment. For the Constraint Set 1, average BD-rate deltas of -0.79%, -1.52%, and -1.52% (Y, U, V) are reported relative to the JEM 7.0 anchor. For Constraint Set 2, average BD-rate deltas of -0.84%, -0.58%, and -0.80% (Y, U, V) are reported relative to the JEM 7.0 anchor. It is reported that the present implementation increases the encoder runtime to 387% and the decoder runtime to 113% on average, compared to the JEM 7.0 anchor.
The 360° category proposal includes one tool for motion compensation and one tool for loop filtering. In the submission, the video is encoded in an equiangular cube-map projection format. Motion compensation is applied to the cube faces of the reference pictures which are extended by a geometry-corrected projection to each cube face plane. For deblocking filtering at the face boundaries, samples of the neighboring faces in the 3D arrangement are employed rather than the neighboring samples of the coding arrangement. No padding of samples is applied at the face boundaries of the coding arrangement. For the Constraint Set 1, average E2E WS-PSNR BD-rate deltas of -10.3%, -13.0%, and -15.2% (Y, U, V) and E2E SPSNR-NN BD-rate deltas of -10.6%, -12.7%, and -15.1% (Y, U, V) are reported relative to the JEM 7.0 anchor. It is reported that the present implementation decreases the encoder runtime to 99% and increases the decoder runtime to 174% on average compared to JEM 7.0 using the same projection format and coding arrangement as the proposal.

[bookmark: _Toc510328145]Contents
Abstract	i
Contents	ii
1	Introduction	1
1.1	Used Acronyms	3
2	Decoder algorithm description	3
2.1	General algorithm description	3
2.1.1	Bitstream structure	4
2.1.2	Entropy decoding	16
2.1.3	Conversion process from entropy decoded data to symbols	18
2.1.4	Decoder-side motion refinement	23
2.1.5	Inverse quantization	23
2.1.6	Inverse transforms	24
2.1.7	Motion compensation	28
2.1.8	Intra prediction	30
2.1.9	In-loop filtering	35
2.1.10	Additional tools	35
2.1.11	Additional algorithmic description topic(s)	41
2.2	360° Video	41
2.2.1	Projection format (including padding)	41
2.2.2	Quantization handling	43
2.2.3	360° video specific decoding tools	43
2.3	HDR	52
2.3.1	Post-processing	52
2.3.2	Quantization handling	52
2.3.3	HDR specific decoding tools	52
3	Encoder algorithm description	53
3.1	General algorithm description	53
3.1.2	Rate-distortion optimization	53
3.1.3	Partitioning structure selection	54
3.1.4	Intra prediction mode estimation and type selection	58
3.1.5	Motion estimation and motion segment selection	59
3.1.6	Mode decisions	59
3.1.7	In-loop filtering type selection and parameter estimation	59
3.1.8	Transforms and transform type selection	60
3.1.9	Quantization and quantization type selection for SDR and 360° video	60
3.1.10	Entropy coding for SDR and 360° video	60
3.1.11	Additional tools	60
3.1.12	Additional encoder optimization	60
3.1.13	Additional algorithmic description topic(s)	61
3.2	360°	61
3.2.1	Usage of projection format adaptation	61
3.2.2	360° Video specific encoding tools	61
3.2.3	Additional encoder optimization	61
3.3	HDR	61
4	Compression performance	62
4.1	SDR: Constraint set 1 configuration relative to HM anchor	62
4.1.1	Class SDR-A (RD-curves)	62
4.1.2	Class SDR-B (RD-curves)	64
4.1.3	Overall (BD-rate summary tables)	65
4.2	SDR: Constraint set 2 configuration relative to HM anchor	66
4.2.1	Class SDR-B	66
4.2.2	Overall	68
4.3	SDR: Constraint set 1 configuration relative to JEM anchor	68
4.3.1	Class SDR-A	69
4.3.2	Class SDR-B	71
4.3.3	Overall	72
4.4	SDR: Constraint set 2 configuration relative to JEM anchor	73
4.4.1	Class SDR-B	73
4.4.2	Overall	75
4.5	HDR: Constraint set 1 configuration relative to HM anchor	75
4.6	HDR: Constraint set 1 configuration relative to JEM anchor	75
4.7	360° Video: Constraint set 1 configuration relative to HM anchor	75
4.7.1	Class 360	75
4.7.2	Overall	77
4.8	360° Video: Constraint set 1 configuration relative to JEM anchor	77
4.8.1	Class 360	78
4.8.2	Overall	79
4.9	360° Video: Projection format conversion only	80
5	Decoder complexity analysis	81
5.1	SDR specific complexity analysis	81
5.1.1	Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by HM16.16	81
5.1.2	Description of computing platform used to determine decoding times reported in section 5.1.1	81
5.1.3	Memory usage of decoder	82
5.1.4	Complexity characteristics of decoder entropy decoding operation	83
5.1.5	Complexity characteristics of decoder inverse quantization	83
5.1.6	Complexity characteristics of decoder inverse transform operation	83
5.1.7	Complexity characteristics of decoder-side motion refinement	83
5.1.8	Complexity characteristics of decoder motion compensation	84
5.1.9	Complexity characteristics of decoder intra-frame prediction operation	84
5.1.10	Complexity characteristics of decoder in-loop filtering operation	84
5.1.11	Complexity characteristics of additional decoder tools	84
5.2	Complexity characteristics of 360° video specific decoding tools	84
5.2.1	Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JEM7.0 with same coding arrangement	85
5.2.2	Description of computing platform used to determine decoding times reported in section 5.1.1	85
5.2.3	Memory usage of decoder	86
5.2.4	Complexity characteristics of decoder motion compensation	86
5.2.5	Complexity characteristics of decoder in-loop filtering operation	86
5.2.6	Complexity characteristics of additional decoder tools	86
5.3	Complexity characteristics of HDR specific decoding tools	86
5.4	Degree of capability for decoder parallel processing	86
5.4.1	SDR specific	86
5.4.2	360° video specific	87
6	Encoder complexity analysis	87
6.1	SDR specific complexity analysis	87
6.1.1	Encoding time and measurement methodology	87
6.1.2	Description of computing platform used to determine encoding times reported in section 6.1.1	87
6.1.3	Memory usage of encoder	87
6.1.4	Complexity characteristics of encoder intra-frame prediction type selection	88
6.1.5	Complexity characteristics of encoder motion estimation and motion segmentation selection	88
6.1.6	Complexity characteristics of encoder transforms and transform type selection	88
6.1.7	Complexity characteristics of encoder quantization and quantization type selection	89
6.1.8	Complexity characteristics of encoder in-loop filtering type selection and parameter estimation	89
6.1.9	Complexity characteristics of encoder entropy coding type selection	89
6.1.10	Complexity characteristics of additional encoder tools	89
6.2	Complexity characteristics of 360° video specific encoding tools	89
6.2.1	Encoding time and measurement methodology	89
6.2.2	Description of computing platform used to determine encoding times reported in section 6.1.1	89
6.2.3	Memory usage of encoder	89
6.2.4	Complexity characteristics of encoder motion estimation and motion segmentation selection	90
6.2.5	Complexity characteristics of encoder in-loop filtering type selection and parameter estimation	90
6.2.6	Complexity characteristics of additional encoder tools	90
6.3	Complexity characteristics of HDR specific encoding tools	90
6.4	Degree of capability for encoder parallel processing	90
6.4.1	SDR specific	90
6.4.2	360° video specific	90
7	Algorithmic characteristics	90
7.1	Random access characteristics for SDR and 360° video	90
7.2	Delay characteristics	90
7.2.1	SDR	90
7.2.2	360° Video	90
7.3	Additional characteristics discussion topic(s)	91
7.3.1	SDR	91
7.3.2	360° Video	91
8	Software implementation description	91
8.1	SDR specific software implementation description	91
8.2	360° Video specific software implementation description	91
9	Highlighted aspects discussion	91
9.1	SDR	91
9.2	360° video	91
10	Closing remarks	92
11	Patent rights declaration(s)	92
12	Annex 1: Questionnaire	92
12.1	SDR	92
12.1.1	Codec level Q&A	92
12.1.2	Tool level Q&A	93
12.2	360° Video	97
12.2.1	Codec level Q&A	97
12.2.2	Tool level Q&A	97
13	References	98

	Page: 91	Date Saved: 2018-04-01
[bookmark: _Toc510328146]Introduction
The presented proposal is based on JEM 7.0 for both submitted categories (SDR and 360° video). The main difference compared to JEM 7.0 are the addition of the following coding tools:
· Geometric Partitioning (GEO) for SDR, an optional usage of shape-adaptive DCT (SADCT) for GEO blocks
· Face extension and face-boundary optimized filtering for 360° video content
Geometric partitioning is available as an additional partitioning option available at every leaf node of the QTBT. Each GEO coding unit (CU) is split into two segments, which are denoted prediction segments (PS) via a straight line. In the following, the segment containing the lop left sample of the block is denoted as and the other segment is denoted as . Each segment can be inter- or intra-predicted. For transform coding of each segment, SADCT can be utilized as an alternative to conventional block-based DCT transform coding.[bookmark: _Ref509567872]Figure 1: Exemplified partitioning of a CTU using QTBT and GEO, indicating different prediction mode combinations for GEO blocks.

For 360° video coding a cube-based projection format is used. To improve motion compensation across face boundaries extended faces are computed (Figure 2). The extended faces are used for motion estimation and compensation and require no additional signaling. The extensions compensate for distortions at face boundaries and allow exploitation of 360° symmetries.

	[image:]
a
	[image:]

	[image:]
b
	

[bookmark: fig_cube_face_extension_cyclist]Figure 2: Left side: the original cube faces a and b. Right: The extended face. Obtained by extending a with the projection of b

To address artifacts occurring in 360° video using a cube-based projection format a modified deblocking filter is used. For deblocking, face boundaries which are connected in the 3D representation of the cube are deblocked jointly (Figure 3).

[bookmark: fig_cube_dbf_cyclist]Figure 3: Orange: Edges, which will be deblocked jointly with deblocking filter modified for 360° video.
[bookmark: _Toc510328147]Used Acronyms
ALF: Adaptive Loop Filter
DBF: Deblocking Filter
EAC: Equiangular Cube Projection
GEO: Geometric Partitioning
HEVC: High Efficiency Video Coding
JEM: Joint Exploration Model
MC: Motion Compensation
MV: Motion vector
OBMC: Overlapped Block Motion Compensation.
PERP: Padded Equirectangular Projection
PPS: Picture Parameter Set
QTBT: Quadtree Plus Binary Tree
SEI: Supplemental Enhancement Information

[bookmark: _Toc504414405][bookmark: _Toc504414582][bookmark: _Toc504419890][bookmark: _Toc504420041][bookmark: _Toc504422367][bookmark: _Toc504486622][bookmark: _Toc504414262][bookmark: _Toc504414406][bookmark: _Toc504414583][bookmark: _Toc504419891][bookmark: _Toc504420042][bookmark: _Toc504422368][bookmark: _Toc504486623][bookmark: _Toc510328148]Decoder algorithm description
The proposal description follows the recommended structure. The SDR tools and the 360 tools are described in their respective subsections as predefined by the document template.
	Note: Proposed SDR tools have not been activated in the 360° video category.
[bookmark: _Toc510328149]General algorithm description
SDR
Figure 4 shows a block diagram of the proposed hybrid coding scheme. The major addition compared to HEVC and the JEM 7.0 software is the addition of a “Partitioner” block, which generates the geometric partition for the current block and provides all partition-related information for dependent processes. The partitioner directly influences the motion compensation (and motion estimation at the encoder) as it is performed segment-wise in case a block is geometrically partitioned. Further, the partitioner influences the intra-prediction process and the transform coding by making the shape information available for the dependent SADCT, which is available as an optional transform for both intra- and inter-predicted segments.
[image:]
[bookmark: _Ref509588270]Figure 4: Encoder- / decoder block diagram of the proposed hybrid video coding scheme for the SDR category.
360
As GEO was not activated for the 360° video category, the overall codec structure remains unchanged compared to JEM 7.0. The block diagram corresponds to Figure 4 without the “Partitioner” block. In the submitted implementation, several pictures with extended faces are stored in the buffer for each reference picture, one for each cube face.
[bookmark: _Toc510328150]Bitstream structure
Modifications for SDR
The proposed scheme makes use of the JEM 7.0 Bitstream structure with additional syntax elements for coding of the GEO mode. The additional syntax elements are signaled at different hierarchy levels of the bitstream. For enabling geometric partitioning for the entire sequence, a geo_enabled_flag is coded in the Sequence Parameter Set (SPS). Further, a geo_ctu_flag is coded at the coding tree unit (CTU) level to indicate, whether any coding units (CU) use geometric partitioning. If this is the case, a geo_cu_flag is coded to indicate whether the current coding unit utilizes GEO. Accordingly, the GEO parameters which specify the coordinates of the line on the block boundary are coded. Subsequently, for each segment, an geo_inter_intra_flag is decoded, which specifies whether the current segment is inter- or intra-predicted. In the first case, motion information is coded, which to a large extent resembles the motion information coded for rectangular blocks as in JEM. In the second case, no additional syntax elements are coded as only a single intra-prediction mode is available (modified planar prediction) for a prediction segment. After coding of prediction-related side information, residual side-information is coded. Here, for a GEO block, a geo_sadct_mode_index is signaled, which specifies whether the SADCT or the DCT is used for coding of the residual (if a residual is present).
In the following, the syntax and semantics of the proposed additions to the JEM software are detailed. Changes and additions related to GEO are marked in grey.
[bookmark: _Toc504414266][bookmark: _Toc504414410][bookmark: _Toc504414587][bookmark: _Toc504419895][bookmark: _Toc504420046][bookmark: _Toc504422372][bookmark: _Toc504486627]Syntax
SPS syntax changes
Table 1: SPS syntax changes and additions.
	seq_parameter_set_rbsp() {
	Descriptor

	…
	

		strong_intra_smoothing_enabled_flag
	u(1)

		vui_parameters_present_flag
	u(1)

		if(vui_parameters_present_flag)
	

			vui_parameters()
	

	… JEM specific syntax
	

		geo_enabled_flag
	u(1)

	… JEM specific syntax
	

		sps_extension_present_flag
	u(1)

	…
	

CTU syntax changes
Table 2: CTU-level syntax changes and additions.
	coding_tree_unit() {
	Descriptor

	…
	

	… JEM specific syntax
	

	…
	

		if(slice_sao_luma_flag | | slice_sao_chroma_flag)
	

			sao(xCtb >> CtbLog2SizeY, yCtb >> CtbLog2SizeY)
	

		if(geo_enabled_check())
	

			geo_ctu_flag
	ae(v)

		coding_qtbt_unit(…)
	

	}
	

Table 3: CTU-level GEO enabled check syntax.
	geo_enabled_check() {
	

	 if (poc % POC_MOD_SKIP | temporal_layer >= TL_GEQ_SKIP | isIntraSlice | !geo_enabled_flag)
	

	 return false
	

	 else
	

	 return true
	

	}
	

CU syntax changes
Table 4: CU-level syntax changes and additions.
	coding_qtbt_unit(…) {
	Descriptor

		…
	

		… JEM specific syntax
	ae(v)

		…
	

				pred_mode_flag
	ae(v)

				if (pred_mode_flag == MODE_INTER && geo_ctu_flag && geo_size_check(x0, y0))
	

					geo_cu_flag[x0][y0]
	ae(v)

				if (geo_cu_flag[x0][y0])
	

					geo_partitioning_coding(x0 , y0)
	

		if(CuPredMode[x0][y0] = = MODE_INTRA) { /* INTRA CODING */
	

		…
	

		… JEM specific syntax
	

		…
	

		} else { /* INTER CODING */
	

			if (geo_cu_flag[x0][y0]) {
	

				prediction_unit(… , puMask, 0)
	

				prediction_unit(… , puMask, 1)
	

			}
	

			else /* Same as QTBT without GEO */
	

				prediction_unit(…)
	

		}
	

	…
	

	… JEM specific syntax
	

	…
	

		if(!pcm_flag[x0][y0]) {
	

			if((CuPredMode[x0][y0] != MODE_INTRA && merge_flag[x0][y0]) 															|| geo_cu_flag[x0][y0])
	

				rqt_root_cbf
	ae(v)

			if(rqt_root_cbf)
	

				transform_tree(…)
	

		}
	

	}
	

Table 5: Coding of GEO partitioning parameters.
	geo_partitioning_coding(x0, y0) {
	

		if (geo_prediction_mode_size_check(x0, y0)) {
	

			geo_prediction_mode_flag[x0][y0]
	ae(v)

			geo_predictor_index[x0][y0]
	ae(v)

			geo_predictor_offset_coding(x0, y0)
	

		}
	

		else
	

			geo_predictor_index[x0][y0]
	ae(v)

	}
	

Table 6: CU-level GEO enabled check syntax.
	geo_size_check(x0, y0) {
	

		if (cu_width >= GEO_CU_W_GEQ && cu_height >= GEO_CU_H_GEQ)
	

			return true
	

		else
	

			return false
	

	}
	

Table 7: CU-level GEO prediction mode check syntax.
	geo_prediction_mode_size_check (x0, y0) {
	

		if (cu_width >= GEO_CU_P_W_GEQ && cu_height >= GEO_CU_P_H_GEQ)
	

			return true
	

		else
	

			return false
	

	}
	

Table 8: CU-level coding of GEO partitioning refinement parameters.
	geo_predictor_offset_coding(x0, y0) {
	

		geo_offset_greater0_flag[x0][y0][0]
	ae(v)

		geo_offset_greater0_flag[x0][y0] [1]
	ae(v)

		if (geo_offset_greater0_flag[x0][y0] [0])
	

			geo_offset_greater1_flag[x0][y0] [0]
	ae(v)

		if (geo_offset_greater0_flag[x0][y0] [1])
	

			geo_offset_greater1_flag[x0][y0] [1]
	ae(v)

		if (geo_offset_greater0_flag[x0][y0] [0]) {
	

			if (geo_offset_greater1_flag[x0][y0] [0])
	

				abs_geo_offset_minus2[x0][y0] [0]
	ae(v)

			geo_offset_sign_flag[[x0][y0]0]
	ae(v)

		}
	

		if (geo_offset_greater0_flag[x0][y0] [1]) {
	

			if (geo_offset_greater1_flag[x0][y0] [1])
	

				abs_geo_offset_minus2[x0][y0] [1]
	ae(v)

			geo_offset_sign_flag[x0][y0] [1]
	ae(v)

		}
	

	}
	

Table 9: Prediction-unit-level syntax changes and additions.
	prediction_unit(… , puMask, psIndex) {
	Descriptor

		if(cu_skip_flag[x0][y0]) {
	

			…
	

			… JEM specific syntax
	

			…
	

			if(MaxNumMergeCand > 1)
	

				merge_idx[x0][y0][psIndex]
	ae(v)

		} else { /* MODE_INTER */
	

			if (geo_cu_flag)
	

				geo_inter_intra_flag[x0][y0][psIndex]
	ae(v)

			if ((geo_cu_flag[x0][y0] && geo_inter_intra_flag == MODE_INTER) 																|| !geo_cu_flag[x0][y0]) {
	

				merge_flag[x0][y0][psIndex]
	ae(v)

			if (!geo_cu_flag[x0][y0])
	

				fruc_merge_mode_coding()
	

			if (affine_enabled_flag && !geo_cu_flag[x0][y0])
	

					affine_flag[x0][y0]
	

			…
	

			… JEM specific syntax
	

			…
	

				if(merge_flag[x0][y0][psIndex]) {
	

					if(MaxNumMergeCand > 1)
	

						merge_idx[x0][y0][psIndex]
	ae(v)

				} else {
	

					if ((geo_cu_flag[x0][y0] && geo_inter_intra_flag[x0][y0][psIndex] == 													MODE_INTER) 	|| !geo_cu_flag[x0][y0]) {
	

						if(slice_type = = B)
	

							inter_pred_idc[x0][y0][psIndex]
	ae(v)

						if (affine_enabled_flag && !geo_cu_flag[x0][y0])
	

							affine_flag[x0][y0]
	

						…
	

						… JEM specific syntax
	

						…
	

						if(inter_pred_idc[x0][y0][psIndex] != PRED_L1) {
	

							if(num_ref_idx_l0_active_minus1 > 0)
	

								ref_idx_l0[x0][y0][psIndex]
	ae(v)

							mvd_coding(x0, y0, 0 , psIndex)
	

							mvp_l0_flag[x0][y0][psIndex]
	ae(v)

						}
	

						if(inter_pred_idc[x0][y0][psIndex] != PRED_L0) {
	

							if(num_ref_idx_l1_active_minus1 > 0)
	

								ref_idx_l1[x0][y0][psIndex]
	ae(v)

						 if(mvd_l1_zero_flag && inter_pred_idc[x0][y0][psIndex] == PRED_BI) {
	

								MvdL1[x0][y0][0][psIndex] = 0
	

								MvdL1[x0][y0][1][psIndex] = 0
	

							} else
	

								mvd_coding(x0, y0, 1, psIndex)
	

							mvp_l1_flag[x0][y0][psIndex]
	ae(v)

						}
	

					}
	

				}
	

			}
	

			if (!merge_flag[x0][y0] && !affine_flag[x0][y0] && !geo_cu_flag[x0][y0])
	

				imv_flag[x0][y0]
	ae(v)

			if (!merge_flag[x0][y0] && (nPbW* nPbH <= OBMC_MAX_SIZE) 																&& !geo_cu_flag[x0][y0])
	

				obmc_flag[x0][y0]
	ae(v)

		}
	

		if (ic_enabled_flag && !merge_flag[x0][y0] && fruc_merge_mode[x0][y0] == 							MODE_OFF && !affine_flag[x0][y0] && !geo_cu_flag[x0][y0])
	

			ic_flag[x0][y0]
	ae(v)

	}
	

Table 10: Transform-tree-level syntax.
	transform_tree(x0, y0, cu_width, cu_height) { /* No transform tree with QTBT */
	Descriptor

		if (isQTBT_chroma || slice_type ! = I) {
	

			for (compId = Cb; compId < numValidComp; compId++) {
	

				transform_unit(isDQPCoded, isChromaQpAdjCoded, compId)
	

			}
	

		}
	

		if (isQTBT_luma) {
	

			transform_unit(isDQPCoded, isChromaQpAdjCoded, Y)
	

		}
	

		if (validCbf && isDQPCoded && delta_qp_enabled_flag) {
	

			codeQP()
	

		}
	

		if (chroma_qp_adj_enabled_flag && isChromaQpAdjCoded && validChromaCbf 														&& !cu_transquant_bypass_flag) {
	

			codeChromaQPAdj()
	

		}
	

	}
	

Table 11: Transform-unit-level syntax changes and additions.
	transform_unit(…) {
	Descriptor

		if (CuPredMode[x0][y0] = = MODE_INTRA || compId != Y || (chromaEnabled && 															(cbfCb || cbfCr)) {
	

			cbf[x0][y0][compId]
	ae(v)

		}
	

		if (cbf[x0][y0][compId]) {
	

			if (geo_cu_flag[x0][y0])
	

				geo_sadct_mode[x0][y0][compId]
	ae(v)

			if (compId == Y)
	

				emt_cu_flag[x0][y0]
	ae(v)

			residual_coding(…, geo_sadct_mode[x0][y0] - 1)
	

			if (geo_sadct_mode[x0][y0] == 3)
	

				residual_coding(…, geo_sadct_mode[x0][y0] - 2)
	

		}
	

	}
	

Table 12: Residual-coding related syntax changes and additions.
	residual_coding(…, geo_sadct_mode) {
	Descriptor

		if (geo_sadct_mode >= 0)
	

			geo_sadct_mode_enabled = 1
	

		else
	

			geo_sadct_mode_enabled = 0
	

		if(transform_skip_enabled_flag && !cu_transquant_bypass_flag &&
		(log2TrafoSize <= Log2MaxTransformSkipSize))
	

			transform_skip_flag[x0][y0][cIdx]
	ae(v)

		if(CuPredMode[x0][y0] = = MODE_INTER && explicit_rdpcm_enabled_flag &&
		(transform_skip_flag[x0][y0][cIdx] | | cu_transquant_bypass_flag)) {
	

			explicit_rdpcm_flag[x0][y0][cIdx]
	ae(v)

			if(explicit_rdpcm_flag[x0][y0][cIdx])
	

				explicit_rdpcm_dir_flag[x0][y0][cIdx]
	ae(v)

		}
	

		last_sig_coeff_x_prefix
	ae(v)

		last_sig_coeff_y_prefix
	ae(v)

		if(last_sig_coeff_x_prefix > 3)
	

			last_sig_coeff_x_suffix
	ae(v)

		if(last_sig_coeff_y_prefix > 3)
	

			last_sig_coeff_y_suffix
	ae(v)

		lastScanPos = 16
	

		lastSubBlock = (1 << (TrafoSizeX− 2)) * (1 << (TrafoSizeY − 2)) − 1
	

		do {
	

			if(lastScanPos == 0 										|| (geo_sadct_mode_enabled && 			SADCTScanOrderCGF[TrafoSizeX−2][TrafoSizeY−2][geo_sadct_mode][lastSubBlock])) 		{
	

				lastScanPos = 16
	

				lastSubBlock− −
	

			}
	

			lastScanPos− −
	

			xS = ScanOrder[TrafoSizeX − 2][TrafoSizeY − 2][scanIdx][lastSubBlock][0]
	

			yS = ScanOrder[TrafoSizeX − 2][TrafoSizeY − 2][scanIdx][lastSubBlock][1]
	

			xC = (xS << 2) + ScanOrder[2][scanIdx][lastScanPos][0]
	

			yC = (yS << 2) + ScanOrder[2][scanIdx][lastScanPos][1]
	

		} while((xC != LastSignificantCoeffX) | | (yC != LastSignificantCoeffY))
	

		for(i = lastSubBlock; i >= 0; i− −) {
	

			if (geo_sadct_mode && 											SADCTScanOrderCGF[TrafoSizeX−2][TrafoSizeY−2][geo_sadct_mode][i])
	

				continue
	

			xS = ScanOrder[log2TrafoSize − 2][scanIdx][i][0]
	

			yS = ScanOrder[log2TrafoSize − 2][scanIdx][i][1]
	

			escapeDataPresent = 0
	

			inferSbDcSigCoeffFlag = 0
	

			if((i < lastSubBlock) && (i > 0)) {
	

				coded_sub_block_flag[xS][yS]
	ae(v)

				inferSbDcSigCoeffFlag = 1
	

			}
	

			for(n = (i = = lastSubBlock) ? lastScanPos − 1 : 15; n >= 0; n− −) {
	

				if (geo_sadct_mode_enabled && SADCTScanOrderSIG[geo_sadct_mode][i][n])
	

					continue
	

				xC = (xS << 2) + ScanOrder[2][2][scanIdx][n][0]
	

				yC = (yS << 2) + ScanOrder[2][2][scanIdx][n][1]
	

				if(coded_sub_block_flag[xS][yS] && (n > 0 | | !inferSbDcSigCoeffFlag)) {
	

					sig_coeff_flag[xC][yC]
	ae(v)

					if(sig_coeff_flag[xC][yC])
	

						inferSbDcSigCoeffFlag = 0
	

				}
	

			}
	

			firstSigScanPos = 16
	

			lastSigScanPos = −1
	

			numGreater1Flag = 0
	

			lastGreater1ScanPos = −1
	

			for(n = 15; n >= 0; n− −) {
	

				if (geo_sadct_mode_enabled && SADCTScanOrderSIG[geo_sadct_mode][i][n])
	

					continue
	

				xC = (xS << 2) + ScanOrder[2][scanIdx][n][0]
	

				yC = (yS << 2) + ScanOrder[2][scanIdx][n][1]
	

				if(sig_coeff_flag[xC][yC]) {
	

					if(numGreater1Flag < 8) {
	

						coeff_abs_level_greater1_flag[n]
	ae(v)

						numGreater1Flag++
	

						if(coeff_abs_level_greater1_flag[n] && lastGreater1ScanPos = = −1)
	

							lastGreater1ScanPos = n
	

						else if(coeff_abs_level_greater1_flag[n])
	

							escapeDataPresent = 1
	

					} else
	

						escapeDataPresent = 1
	

					if(lastSigScanPos = = −1)
	

						lastSigScanPos = n
	

					firstSigScanPos = n
	

				}
	

			}
	

			if(cu_transquant_bypass_flag | |
			(CuPredMode[x0][y0] = = MODE_INTRA &&
				implicit_rdpcm_enabled_flag && transform_skip_flag[x0][y0][cIdx] &&
				(predModeIntra = = 10 | | predModeIntra = = 26)) | |
			explicit_rdpcm_flag[x0][y0][cIdx])
	

				signHidden = 0
	

			else
	

				signHidden = lastSigScanPos − firstSigScanPos > 3
	

			if(lastGreater1ScanPos != −1) {
	

				coeff_abs_level_greater2_flag[lastGreater1ScanPos]
	ae(v)

				if(coeff_abs_level_greater2_flag[lastGreater1ScanPos])
	

					escapeDataPresent = 1
	

			}
	

			for(n = 15; n >= 0; n− −) {
	

				if (geo_sadct_mode_enabled && SADCTScanOrderSIG[geo_sadct_mode][i][n])
	

					continue
	

				xC = (xS << 2) + ScanOrder[2][scanIdx][n][0]
	

				yC = (yS << 2) + ScanOrder[2][scanIdx][n][1]
	

				if(sig_coeff_flag[xC][yC] &&
				(!sign_data_hiding_enabled_flag | | !signHidden | | (n != firstSigScanPos)))
	

					coeff_sign_flag[n]
	ae(v)

			}
	

			numSigCoeff = 0
	

			sumAbsLevel = 0
	

			for(n = 15; n >= 0; n− −) {
	

				if (geo_sadct_mode_enabled && SADCTScanOrderSIG[geo_sadct_mode][i][n])
	

					continue
	

				xC = (xS << 2) + ScanOrder[2][scanIdx][n][0]
	

				yC = (yS << 2) + ScanOrder[2][scanIdx][n][1]
	

				if(sig_coeff_flag[xC][yC]) {
	

					baseLevel = 1 + coeff_abs_level_greater1_flag[n] +
									coeff_abs_level_greater2_flag[n]
	

					if(baseLevel = = ((numSigCoeff < 8) ?
											((n = = lastGreater1ScanPos) ? 3 : 2) : 1))
	

						coeff_abs_level_remaining[n]
	ae(v)

					TransCoeffLevel[x0][y0][cIdx][xC][yC] =
					(coeff_abs_level_remaining[n] + baseLevel) * (1 − 2 * coeff_sign_flag[n])
	

					if(sign_data_hiding_enabled_flag && signHidden) {
	

						sumAbsLevel += (coeff_abs_level_remaining[n] + baseLevel)
	

						if((n = = firstSigScanPos) && ((sumAbsLevel % 2) = = 1))
	

							TransCoeffLevel[x0][y0][cIdx][xC][yC] =
									−TransCoeffLevel[x0][y0][cIdx][xC][yC]
	

					}
	

					numSigCoeff++
	

				}
	

			}
	

		}
	

	}
	

Semantics
For simplicity, the association of each syntax element with a given block coordinate (e.g. x0, y0) is dropped in the description.
1. geo_enabled_flag equal to 1 specifies that the geometric partitioning coding tool is used over the entire sequence. geo_enabled_flag equal to 0 specifies that geometric partitioning is not used. When not present, the value of geo_enabled_flag is inferred to be equal to 0.

2. [bookmark: _Hlk508119267]geo_ctu_flag equal to 1 specifies that geometric partitioning is used by at least one CU leaf within the CTU. geo_ctu_flag equal to 0 specifies that no CU uses geometric partitioning. If geo_enabled_flag is equal to 0, geo_ctu_flag is inferred to be also equal to 0.

3. geo_cu_flag equal to 1 specifies that geometric partitioning is used by the current CU. geo_cu_flag equal to 0 specifies that no geometric partitioning is used by the current CU. If geo_ctu_flag is equal to 0, geo_cu_flag is inferred to be also equal to 0.

4. geo_prediction_mode_flag equal to 1 specifies that temporal / spatial prediction is used for the coding of the GEO partitioning information and a list of temporal / spatial GEO coordinates (denoted GEO predictor candidates) is generated. geo_prediction_mode_flag equal to 0 specifies that template-based prediction is used for the coding of the GEO partitioning information and a pre-defined list of GEO coordinates is utilized as GEO predictor candidates.

5. geo_predictor_index specifies the index of the GEO predictor candidate list. If geo_prediction_mode_flag is equal to 0, the candidate list generation process is invoked before. If geo_prediction_mode_flag is equal to 1, the index maps to the GEO coordinates as shown in the table below:

[bookmark: _Ref508809440]Table 13: Mapping of geo_predictor_index to partitioning coordinates for GEO block using template-based prediction.
	geo_predictor_index
	GEO predictor

	
	P0 = (x0, y0)
	P1 = (x1, y1)

	0
	(000, 128)
	(128, 256)

	1
	(128, 256)
	(256, 128)

	2
	(128, 000)
	(256, 128)

	3
	(128, 000)
	(000, 128)

	4
	(064, 000)
	(192, 256)

	5
	(192, 000)
	(064, 256)

	6
	(000, 064)
	(256, 192)

	7
	(000, 192)
	(256, 064)

	8
	(000, 000)
	(256, 128)

	9
	(256, 000)
	(000, 128)

	10
	(000, 128)
	(256, 256)

	11
	(256, 128)
	(000, 256)

	12
	(128, 000)
	(000, 256)

	13
	(128, 000)
	(256, 256)

	14
	(000, 000)
	(128, 256)

	15
	(256, 000)
	(128, 256)

6. geo_offset_greater0_flag[coordId] specifies whether the absolute value of the coordinate offset added to a GEO predictor coordinate is greater than 0.

7. geo_offset_greater1_flag[coordId] specifies whether the absolute value of the coordinate offset added to a GEO predictor coordinate is greater than 1.

8. geo_offset_abs_minus2[coordId] plus 2 specifies the absolute value of the coordinate offset added to a GEO predictor coordinate.

9. [bookmark: _Hlk509480120]geo_offset_sign_flag[coordId] specifies the sign of the coordinate offset added to a GEO predictor coordinate. If geo_offset_sign_flag[coordId] is equal to 0, the offset is positive, which moves the GEO predictor coordinate in mathematical positive direction along the boundary of the current block. If geo_offset_sign_flag[coordId] is equal to 1, the offset is negative, which moves the GEO predictor coordinate in mathematical negative direction along the boundary of the current block.

10. geo_inter_intra_flag[psIndex] equal to 0 specifies that the current segment addressed by psIndex is INTER coded, thus motion compensation related syntax elements may be coded. geo_inter_intra_flag[psIndex] equal to 1 specifies that the current segment addressed by psIndex is INTRA coded. No further intra coding related side information is coded in this case.

11. geo_sadct_mode specifies the transform coding mode for the current GEO block if a residual is coded. The values taken by geo_sadct_mode are as follows:

· geo_sadct_mode equal to 0 specifies that the DCT is used to code the residual.
· geo_sadct_mode equal to 1 specifies that only the residual samples associated with segment 0 are coded using the Shape-Adaptive DCT.
· geo_sadct_mode equal to 2 specifies that only the residual samples associated with segment 1 are coded using the Shape Adaptive DCT.
· geo_sadct_mode equal to 3 specifies that both segments 0 and 1 are coded individually using the Shape-Adaptive DCT.
Modifications for 360° video
For 360° video the decoder needs to know the face arrangement of the cube faces. To this end the PPS is extended as follows:
(syntax elements are based on SEI message described in JCTVC-Z0026, they are a subset of the element in the SEI message. Changes are highlighted in cyan.)
[bookmark: _Ref509841483]Syntax
PPS syntax changes

	pic_parameter_set_rbsp() {
	Descriptor

	…
	

		pps_360_video_present_flag
	u(1)

		if(pps_360_video_present_flag) {
	

			pps_360_video_format_description()
	

		}
	

	…
	

	pps_360_video_format_description(){
	Descriptor

		cube_face_packing_arrangement
	ue(v)

		num_regions_minus1
	ue(v)

		for(i = 0; i <= num_regions_minus1; i++) {
	

			region_left_offset[i]
		ue(v)

			region_top_offset[i]
	ue(v)

			region_width[i]
	ue(v)

			region_height[i]
	ue(v)

			cube_face_id[i]
	u(3)

			cube_face_rotation_divided_by_90[i]
	u(2)

		}
	

	}
	

[bookmark: _Ref509841487]Semantics
pps_360_video_present_flag equal to 1 indicates that the picture is a 360 picture. pps_360_video_present_flag equal to 0 indicates that the picture is not a 360 picture.
cube_face_packing_arrangement specifies the type of packing arrangement describing the number of rows and columns of cube faces in the coded picture when the cube map projection is applied. The value of cube_face_packing_arrangement shall be in the range of 0 to 15, inclusive.

Table 2. Definition of cube_face_packing_arrangement
	Value
	Interpretation

	0
	3 columns and 2 rows are used (3x2 layout)

	1
	4 columns and 3 rows are used (4x3 layout)

	2-15
	reserved

num_regions_minus1 specifies the number of regions that cube faces are mapped to in the coded picture. The value of num_regions_minus1 shall be in the range of 0 to 15, inclusive.
region_left_offset and region_top_offset specify respectively the horizontal and vertical offset of the top-left pixel of the rectangular region in the coded picture. The value of region_left_offset shall be in the range of 0 to pic_width_in_luma_samples, inclusive. The value of region_top_offset shall be in the range of 0 to pic_height_in_luma_samples, inclusive.
region_width and region_height specify respectively the width and height of the region in the coded picture. The value of region_width shall be in the range of 0 to pic_width_in_luma_samples, inclusive. The value of region_height shall be in the range of 0 to pic_height_in_luma_samples, inclusive.
NOTE: cube faces can be packed into the same coded picture with an emphasis (e.g. greater spatial area) on the certain viewport. For example, the cube front face may be sampled with a higher resolution compared to other cube faces. In this case, since each face may have different resolutions, the region corresponding to each face is needed to indicate by the region_left_offset, region_top_offset, region_width and region_height.
cube_face_id specifies the identifier of cube face that is mapped to the region indicated by the region_left_offset, region_top_offset, region_width and region_height. The value of cube_face_id shall be in the range of 0 to7, inclusive.
Table 3. Definition of cube_face_id
	Value
	Interpretation

	0
	cube_front

	1
	cube_top

	2
	cube_bottom

	3
	cube_left

	4
	cube_right

	5
	cube_back

	6-7
	reserved

cube_face_rotation_divided_by_90 specifies the amount of rotation, in degrees, that has been applied to map the cube face to the corresponded region in the coded picture. The cube face region may be rotated by 0, 90, 180 or 270 degrees. The value of cube_face_rotation_divided_by_90 shall be in the range of 0 to3, inclusive. The corresponding rotation value is computed as cube_face_rotation_divided_by_90 * 90.
[bookmark: _Toc510328151]Entropy decoding
Modifications for SDR
Basic JEM 7.0 entropy decoding with additional decoding of the above specified syntax elements for GEO.
As in the HEVC specification the following applies: initType=0 for I-slice, initType=1 for P-slice, initType=2 for B-slice.

Table 14: Association of ctxIdx and syntax elements for each initializationType in the initialization process
	Syntax structure
	Syntax element
	ctxTable
	initType

	
	
	
	0
	1
	2

	coding_tree_unit()
	geo_ctu_flag[][]
	Table 2-1-1
	n/a
	0..2
	3..5

	coding_qtbt_unit()
	geo_cu_flag[][]
	Table 2-1-2
	n/a
	0..2
	3..5

	
	geo_prediction_mode_flag[][]
	Table 2-1-3
	n/a
	0..2
	3..5

	
	geo_predictor_index[][]
	Table 2-1-4
	n/a
	0..4
	5..9

	
	geo_offset_greater0_flag[][][]
	Table 2-1-5
	n/a
	0..1
	2..3

	
	geo_offset_greater1_flag[][][]
	Table 2-1-6
	n/a
	0..1
	2..3

	prediction_unit()
	geo_inter_intra_flag[][][]
	Table 2-1-7
	n/a
	0..2
	2..3

	transform_tree()
	geo_sadct_mode[][][]
	Table 2-1-8
	n/a
	0..2
	2..3

Table 15: Values of initValue for ctxIdx of geo_ctu_flag.
	Initialization variable
	ctxIdx of geo_ctu_flag

	
	0
	1
	2
	3
	4
	5

	initValue
	124
	124
	124
	124
	124
	124

Table 16: Values of initValue for ctxIdx of geo_cu_flag.
	Initialization variable
	ctxIdx of geo_cu_flag

	
	0
	1
	2
	3
	4
	5

	initValue
	196
	196
	196
	196
	196
	196

Table 17: Values of initValue for ctxIdx of geo_prediction_mode_flag.
	Initialization variable
	ctxIdx of geo_prediction_mode_flag

	
	0
	1
	2
	3
	4
	5

	initValue
	168
	168
	168
	168
	168
	168

Table 18: Values of initValue for ctxIdx of geo_predictor_index.
	Initialization variable
	ctxIdx of geo_predictor_index

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	initValue
	154
	154
	154
	154
	154
	154
	154
	154
	154
	154

Table 19: Values of initValue for ctxIdx of geo_offset_greater0_flag.
	Initialization variable
	ctxIdx of geo_offset_greater0_flag

	
	0
	1
	2
	3

	initValue
	154
	154
	154
	154

Table 20: Values of initValue for ctxIdx of geo_offset_greater1_flag.
	Initialization variable
	ctxIdx of geo_offset_greater1_flag

	
	0
	1
	2
	3

	initValue
	154
	154
	154
	154

Table 21: Values of initValue for ctxIdx of geo_inter_intra_flag.
	Initialization variable
	ctxIdx of geo_inter_intra_flag

	
	0
	1
	2
	3
	4
	5

	initValue
	154
	154
	154
	154
	154
	154

Table 22: Values of initValue for ctxIdx of geo_sadct_mode.
	Initialization variable
	ctxIdx of geo_sadct_mode

	
	0
	1
	2
	3
	4
	5

	initValue
	154
	154
	154
	154
	154
	154

Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328152]Conversion process from entropy decoded data to symbols
Modifications for SDR
Table 23: Syntax elements and associated binarizations.
	Syntax structure
	Syntax element
	Binarization

	
	
	Process
	Input parameters

	coding_tree_unit()
	geo_ctu_flag[][]
	FL
	cMax = 1

	coding_qtbt_unit()
	geo_cu_flag[][]
	FL
	cMax = 1

	
	geo_prediction_mode_flag[][]
	FL
	cMax = 1

	
	geo_predictor_index[][]
	FL, TR
2.1.3.7
	cMax = geoMaxNumPredictorsMinusOne

	
	geo_offset_greater0_flag[][][]
	FL
	cMax = 1

	
	geo_offset_greater1_flag[][][]
	FL
	cMax = 1

	
	geo_offset_abs_minus2[][][]
	EG0
	-

	
	geo_offset_sign_flag[][][]
	FL
	cMax = 1

	prediction_unit()
	geo_inter_intra_flag[][][]
	FL
	cMax = 1

	transform_tree()
	geo_sadct_mode[][][]
	FL
	cMax = 3

Table 24: Assignment of ctxInc to syntax elements with context coded bins.
	Syntax element
	binIdx

	
	0
	1
	2
	3
	4
	>= 5

	geo_ctu_flag[][]
	0,1,2 (see 2.1.3.7)
	na
	na
	na
	na
	na

	geo_cu_flag[][]
	0,1,2 (see 2.1.3.7)
	na
	na
	na
	na
	na

	geo_prediction_mode_flag[][]
	0,1,2 (see 2.1.3.7)
	na
	na
	na
	na
	na

	geo_predictor_index[][]
	bypass / 0
	bypass / 1
	bypass / 2
	bypass / 3
	bypass / 4
	bypass / 4

	geo_offset_greater0_flag[][][coordId]
	coordId
	na
	na
	na
	na
	na

	geo_offset_greater1_flag[][][coordId]
	coordId
	na
	na
	na
	na
	na

	geo_offset_abs_minus2[][][]
	bypass
	bypass
	bypass
	bypass
	bypass
	bypass

	geo_offset_sign_flag[][][]
	bypass
	na
	na
	na
	na
	na

	geo_inter_intra_flag[][][]
	0,1,2 (see 2.1.3.2)
	na
	na
	na
	na
	na

	geo_sadct_mode[][][compId]
	 compId
	compId
	compId
	na
	na
	na

[bookmark: _Ref331179653][bookmark: _Ref307236174][bookmark: _Ref291609253][bookmark: _Toc452007884]Derivation process of ctxInc using left and above syntax elements for GEO blocks
Input to this process is a luma location (x0, y0) specifying a luma position on the top or left boundary of the current luma block relative to the top-left sample of the current picture.
Output of this process is ctxInc.
The location (xNbL, yNbL) is set equal to (x0 − 1, y0) and the variable availableL, specifying the availability of the block located directly to the left of the current block, is derived by invoking the availability derivation process for a block in z-scan order with the location (xCurr, yCurr) set equal to (x0, y0) and the neighbouring location (xNbY, yNbY) set equal to (xNbL, yNbL) as inputs, and the output is assigned to availableL.
The location (xNbA, yNbA) is set equal to (x0, y0 − 1) and the variable availableA specifying the availability of the coding block located directly above the current block, is derived by invoking the availability derivation process for a block in z-scan order with the location (xCurr, yCurr) set equal to (x0, y0) and the neighbouring location (xNbY, yNbY) set equal to (xNbA, yNbA) as inputs, and the output is assigned to availableA.
Table 25: Specification of ctxInc using left and above syntax elements.
	Syntax element
	condL
	condA
	ctxInc

	geo_ctu_flag[x0][y0]
	geo_ctu_flag[xNbL][yNbL]
	geo_ctu_flag[xNbA][yNbA]
	(condL && availableL) + (condA && availableA)

	geo_cu_flag [x0][y0]
	geo_cu_flag[xNbL][yNbL]
	geo_cu_flag[xNbA][yNbA]
	(condL && availableL) + (condA && availableA)

	geo_prediction_mode_flag [x0][y0]
	geo_prediction_mode_flag [xNbL][yNbL]
	geo_prediction_mode_flag [xNbA][yNbA]
	(condL && availableL) + (condA && availableA)

	geo_inter_intra_flag [x0][y0]
	geo_inter_intra_flag [xNbL][yNbL]
	geo_inter_intra_flag[xNbA][yNbA]
	(condL && availableL) + (condA && availableA)

Derivation process of ctxInc using the coordId for GEO blocks
Two integer GEO refinement values may be coded, which are added to the GEO predictor coordinates P0 and P1. An example can be seen in Figure 20. The context increments for the first bin of the syntax elements geo_offset_greater0_flag and geo_offset_greater1_flag are chosen by the variable coordId, which is either equal to 0 if referring to P0 or equal to 1 if referring to P1.
Derivation process of ctxInc using the compId for GEO blocks
For signaling the transform mode of each component of each GEO blocks, the sadct_mode syntax element is coded. The context increment for each of three bins are derived from the value of the variable compId. For the luma component compId is equal to 0, for the chrominance components, compId is equal to 1 for the Cb component and compId is equal to 2 for the Cr component.
Modifications for 360° video
Changes specified in semantics related to 360° video (see section 2.1.1.2.2).
[bookmark: _Ref508196157]Intra prediction parameters
Modifications for SDR
An additional geo_inter_intra_flag is coded for GEO partitions, indicating whether inter- or intra-prediction is used for a specific GEO prediction segment. If the flag is equal to 0, inter-prediction is used for the current segment, if the flag is equal to 1, intra prediction is used for the current segment.
Modifications for 360° video
No changes compared to JEM 7.0.
Motion parameters
Modifications for SDR
Coding of motion parameters uses and extension of the JEM 7.0 syntax such that two sets of motion parameters may be signaled for each CU if the CU is geometrically partitioned and both segments are inter-predicted as indicated by geo_inter_intra_flag. This is implemented in the same manner as in HEVC, where two PUs for an inter-predicted CU may be signaled.
Modifications for 360° video
No changes compared to JEM 7.0.
Quantization parameters
Modifications for SDR and 360° video
No changes compared to JEM 7.0.
[bookmark: _Ref508813768]Transform coefficients
Modifications for SDR
The geo_sadct_mode index is coded for each component (Y, Cb, Cr) if the associated cbf is equal to 1 and if the geo_cu_flag is equal to 1.
[bookmark: _Ref508815249]Table 26: Binarization for geo_sadct_mode.
	Value of geo_sadct_mode
	Corresponding Transform
	Bin string

	0
	DCT
	0

	1
	SADCT S0
	110

	2
	SADCT S1
	111

	3
	SADCT S0 + S1
	10

Modifications for 360° video
No changes compared to JEM 7.0.
In-loop filter parameters and 360° video
No changes compared to JEM 7.0.
[bookmark: _Ref508193154]Partitioning parameters
Modifications for SDR
Geometric partitioning is signalled using a combination of syntax elements. At the highest level, the geo_enabled_flag is signalled in the sequence parameter set (SPS). If it is equal to 0, no geometric partitioning is used in the entire sequence and no GEO related syntax elements are decoded. If it is equal to 1, geometric partitioning is used in the sequence. On the next level, the geo_ctu_flag is coded for each CTU if it is indicated by the geo_enabled_check() process. The geo_enabled_check() process checks, whether the current POC is odd or if the temporal layer id is greater or equal to the variable TL_GEQ_SKIP. If one of these conditions is met, geometric partitioning is not used and the geo_ctu_flag is inferred to be equal to 0. Otherwise, geometric partitioning might be used in the current CTU and the geo_ctu_flag is coded. For the CfP submission, the variable TL_GEQ_SKIP is set to 4, which means that effectively every second picture (with odd POC) is not coded using geometric partitioning for both categories C1 and C2.
Partitioning parameters are coded, if the geo_cu_flag is equal to 1. The geo_cu_flag is coded for blocks with luma sample width greater or equal to GEO_CU_W_GEQ and luma sample height greater or equal to GEO_CU_H_GEQ. Both values are set to 8 for submission to the CfP. For smaller blocks, the geo_cu_flag is inferred to be equal to 0, thus no geometric partitioning is used for these blocks.
The partitioning parameters specifying the line slicing the current block consist of two coordinate pairs P0 = (x0, y0) and P1 = (x1, y1) located on the boundary of the current block. The coordinates are specified relative to the top-left luma sample position. Two different coding modes are distinguished to derive the coordinate pairs: template-based prediction of P0 and P1 and temporal-/spatial-prediction of P0 and P1. This is signaled by the geo_prediction_mode_flag, where the value 0 specifies that template-based prediction is used and the value 1 specifies that temporal-/spatial-prediction is used. Predicted partitioning parameters are denoted PP0 and PP1.
The geo_prediction_mode_flag is only signaled for blocks with luma sample width larger or equal to GEO_CU_P_W_GEQ, which is set to 16 for the submission to the CfP and with luma sample height larger or equal to GEO_CU_P_H_GEQ, which is also set to 16 for submission to the CfP. For blocks smaller than this threshold, the geo_prediction_mode_flag is inferred to be equal to 0.
If geo_prediction_mode_flag is equal to 0, a list of template-based predictors is initialized. The list entries are defined Table 13 above. A total of 16 list entries are available, therefore the variable geoMaxNumPredictorsMinusOne is set to 15. If geo_prediction_mode_flag is equal to 1, the list is initialized with predictors from the temporal and spatial neighborhood of the current block which is detailed in 2.1.3.7. In this case, the variable geoMaxNumPredictorsMinusOne is set to 9, as the list can contain a maximum of 10 predictors in this case.
A specific predictor from the candidate list is selected by the value of geo_predictor_index. If the geo_prediction_mode flag is equal to 0, a 4-bit FL code is used to code the value of geo_predictor_index. If the geo_prediction_mode_flag is equal to 1, a TR-code with a maximum value of geoMaxNumPredictorsMinusOne is used. This is indicated in Table 27.
If the geo_prediction_mode_flag is coded, two integer partitioning refinement values pR0 and pR1 are coded. The refinement values specify a relative shift of the partitioning parameters PP0 and PP1 along the boundary of the current block. The refinement values are coded similar to HEVC motion vector differences, where the value of pR0 and pR1 are derived from the syntax elements geo_offset_greater0_flag, geo_offset_greater1_flag, geo_offset_abs_minus2 and geo_offset_sign_flag in the following way:

	
			pP0,1 = 	geo_offset_greater0_flag[coordIdx] *
			(geo_offset_abs_minus2[coordIdx] + 2) * 					(2*geo_offset_sign_flag[coordIdx] - 1)
	(1)
	

geo_offset_greater0_flag[coordIdx] specifies whether the absolute value of a partitioning refinement value is greater than 0.
geo_offset_greater1_flag[coordIdx] specifies whether the absolute value of a partitioning refinement value is greater than 1. When geo_offset_greater1_flag[coordIdx] is not present, it is inferred to be equal to 0.
geo_offset_abs_minus2 [coordIdx] plus 2 specifies the absolute value of a partitioning refinement value.
When geo_offset_abs_minus2[coordIdx] is not present, it is inferred to be equal to −1.
geo_offset_sign_flag[coordIdx] specifies the sign of a partitioning refinement value as follows:
12. If geo_offset_sign_flag[coordIdx] is equal to 0, the corresponding partitioning refinement value has a positive value.
13. Otherwise (geo_offset_sign_flag[coordIdx] is equal to 1), the corresponding partitioning refinement value has a negative value.
When geo_offset_sign_flag[coordIdx] is not present, it is inferred to be equal to 0.

[bookmark: _Ref508815043]Table 27: Binarization for geo_predictor_index.
	Value of inter_pred_idc
	Bin string

	
	geo_prediction_mode_flag==0
	geo_prediction_mode_flag==1

	0
	0000
	0

	1
	0001
	10

	2
	0010
	110

	3
	0011
	1110

	5
	0100
	11110

	6
	0101
	111110

	7
	0111
	1111110

	8
	1000
	11111110

	9
	1001
	11111111

	10
	1010
	-

	11
	1011
	-

	12
	1100
	-

	13
	1101
	-

	14
	1110
	-

	15
	1111
	-

Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328153]Decoder-side motion refinement
Modifications for SDR
The JEM 7.0 DMVD / FRUC mode has been partially adapted for geometrically partitioned blocks. For both AMVP and MERGE mode coding of motion vectors, the template matching method is invoked to derive a candidate motion vector for prediction segment . The L-shaped template definitions are identical to those, which are used for rectangular blocks. The derived motion vector, if available, is placed in the first place of the AMVP list (if not identical to already derived motion vectors) and in the first place of the merge candidate list.current GEO block
templates
templates
collocated position
reference picture
current picture
Figure 5: Template matching for GEO blocks, disregarding GEO partitioning.

It is noted that for segment , which is the segment that is not connected or adjacent to the top-left corner of the GEO block, no DMVD / FRUC derivation is applied.
Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328154]Inverse quantization
Modifications for SDR
No changes compared to JEM 7.0. For SADCT transform coefficients, the same inverse quantization is performed as for regular DCT coded blocks.
Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328155]Inverse transforms
Modifications for SDR
For geometrically partitioned blocks, two transform-types are available: DCT-III (e.g. inverse DCT-II in integer implementation as specified in HEVC) and the Shape-Adaptive DCT from MPEG 4 [1-3] which is used in a floating-point implementation.
The selection of which transform shall be used is determined by the value of geo_sadct_mode as shown in Table 26. If a residual is coded, four options are available for a GEO block of size MxN:
1. Integer DCT-based coding using MxN transform (e.g. as for rectangular blocks without GEO).
2. Shape-Adaptive DCT for samples defined to relate to segment S0.
3. Shape-Adaptive DCT for samples defined to relate to segment S1.
4. Shape-Adaptive DCT separately for samples defined to relate to segment S0 and S1.
It is noted, that when SADCT coding of segment S0 or S1 is selected, this implies that no residual is coded for segment S1 and S0 respectively. For the SADCT, DCT basis functions of varying length are used, which take the shape of the current partition into account by varying the length of the DCT basis functions over each transformed column or row.
The SADCT basis functions of length M are defined by , which are combined to the transform matrix and the inverse transform given be the transposition .

	
	
	[bookmark: _Ref508448439](2)

	
	
	(3)

	
	
	[bookmark: _Ref508448444](4)

Transform matrices from size 1x1 up to size 128x128 are defined according to Equations (2)-(4). The steps necessary to perform inverse SADCT are adapted from the MPEG4 specification for the Δ-SADCT and no major changes were made to the SADCT algorithm itself. In the following a brief description of the steps necessary to perform inverse SADCT is given, assuming that a binary mask M(x, y) is available which specifies if a sample at position (x, y) belongs to the currently active segment and a block of de-quantized coefficients C(x, y). The resulting residual block is denoted R(x,y)
1. Store scaled mean coefficient and replace coefficient .
2. Derive vertical coefficient reordering table reorder_v[y][x] and column lengths l_y[x] from M(x, y).
3. Derive horizontal coefficient reordering table reorder_h[y][x] and row lengths l_x[y].
4. Perform inverse horizontal DCT transform according to row lengths l_x[y] and perform horizontal reordering.
5. Perform inverse vertical DCT transform according to column lengths l_y[x] and perform vertical reordering.
6. Perform Δ-DC correction and add mean value to R(x, y) given M(x, y).

The coding of the SADCT mode is visualized in Figure 6.
Modified scan order for SADCT coefficients[bookmark: _Ref508813450]Figure 6: Coding of SADCT transform modes and transform coefficients for GEO blocks.

For the actual coding of the SADCT coefficients, the shape parameters l_x and l_y are needed, which are derived from the binary mask M(x, y) by shifting all elements belonging to a particular segment up and to the left as explained before. This process is exemplified in Figure 7. The result of this process are two shifted variants of M(x, y), which are denoted as for segment and for segment . [bookmark: _Ref508884915]Figure 7: Shifted masks derived from M(x, y) for SADCT coefficient scan modification.

 and indicate, whether any potentially non-zero SADCT coefficients are available. This knowledge is used in the coding of the transform coefficients. In the proposed approach, the coding of SADCT transform coefficients is essentially similar to the way regular DCT coefficients are coded. In general, input to the transform coding stage is a block of coefficients of size MxN, where the sizes M and N relate to the vertical and horizontal number of samples (e.g. for the luma component). Such a block of coefficients is subdivided into 4x4 transform sub-blocks.
As in HEVC, a last significant coefficient position within a transform sub-block is signaled. This implies that all transform sub-blocks (TSB), which precede the transform sub-block containing the last significant coefficient in the direction of the transform sub-block scan direction do not contain any significant coefficients (which are all set to be zero). For all TSBs succeeding the TSB containing the last significant coefficient (except the last TSB in coding order), a coefficient group flag (CGF) is signaled indicating the presence of at least one significant coefficient if activated.
In HEVC and the JEM software, different scan orders are defined to perform the scanning of coefficients within a transform sub-block containing significant coefficients. The significance is indicated by the significant coefficient flag (SIG). The type of scanning used, such as zig-zag scan, horizontal, vertical and diagonal scan may depend on a multitude of conditions, such as inter- or intra coding mode of the current block, directional intra-prediction mode, block size, component type etc. For inter coded blocks, the diagonal scan is used, which is also used for GEO blocks.[bookmark: _Ref508885237]Figure 8: Adaptation of CGF scan for SADCT by skipping TSB, which are known to be zero.

In Figure 8, an exemplary scan adaptation of CGFs for a geometrically partitioned block using the SADCT is shown. The transform sub-blocks in this case are diagonally scanned. For coding of SADCT coefficients relating to in the example, the shifted binary mask is now used to determine which significant coefficient group flags need to be signaled:

	
	
	(5)

Here, indicates, that no significant coefficient group flag needs to be signaled and thus can be skipped in the scan order. This is indicated in Figure 8 by the TSBs marked in red. Only three sub-blocks are known to contain any SADCT coefficients, which are indexed in reversed scan order, in this specific case 0, 1 and 2.
Within a TSB, the scan order of significant coefficients is also modified using , s=0,1. In the given example, the first transform sub-block in the bottom row succeeds the transform sub-block containing the last significant coefficient but only contains one SADCT coefficient at position 0. The coding of significant coefficient flags for positions 15 to 1 therefore can be omitted by checking if, at the respective position. In the given example, no significant coefficient flag needs to be signaled for TSB 1 as significance of the single coefficient is inferred. This is further exemplified in Figure 10.

Figure 9: Exemplified SADCT operation in forward direction.
[bookmark: _Ref508885692]Figure 10: Adaption of SIG flag scan order for SADCT by skipping coefficients known to be zero.

Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Ref508809368][bookmark: _Ref509491337][bookmark: _Toc510328156]Motion compensation
Modifications for SDR
Motion compensation is performed for GEO blocks very similarly to the way it is performed for rectangular blocks. The major change for GEO blocks lies in the fact that now two segments may be inter-predicted for each block, where the two segments are separated by a straight boundary. The motion compensation itself is performed block-wise for each segment and only the pixels of the block which are part of a segment are retained. The two predicted segments are subsequently merged to form the prediction block. Thus, sample-weighting is necessary, which is achieved by using two segment weighting masks and , that are derived from the binary mask . The motion compensated prediction of an entire GEO block therefore can be formulated as (coordinates omitted for brevity):
	
	
	(6)

where PB0 and PB1 are the motion compensated predictions blocks of a chosen component using the motion information for the respective GEO segments S0 and S1. As with rectangular blocks, PB0 and PB1 can each be uni-directionally or bi-directionally predicted. Weighted prediction is also available for PB0 and PB1.
The segment weighting masks and define the per-pixel weights of each segment. It is noted that samples which are directly crossed by the boundary defined by the GEO coordinates lie in a transition zone from S0 to S1 and vice versa. To avoid strong edges at this boundary, the weighting masks define linear gradients orthogonal to the segment boundaries. This is conceptually exemplified in Figure 11. On the left, an example GEO block is shown, partitioned by the line passing through P0 and P1. Depending on the distance of a pixel to the partitioning line (), a weighting factor is assigned for the respective pixel. [bookmark: _Ref508808937]Figure 11: Distance-dependent sample weighting for GEO segments.

In the software implementation, a simplified approach is used to generate the weighting masks. First, the binary prediction mask is generated as described in 2.1.10.1 using the Bresenham line-drawing algorithm [6]. The partitioning line itself is always assigned to belong to segment as well as all samples right or below the partitioning line.
The binary mask with values of 0 and 1 is then scaled by a factor of 8 and a symmetric 3x3 “box” filter kernel is applied to the mask horizontally or vertically. By iterative application of the same filter kernel to the mask, an increase of the spread size of can be emulated. In the proposal, only one iteration is used. Two exemplified segment prediction weighting masks are shown in Figure 12 below.

Motion Vector Prediction[bookmark: _Ref508808962]Figure 12: Example of segment prediction weighting masks for GEO.

Motion vector prediction has been adapted from HEVC / JEM 7.0 for geometric partitions such that the partitioning coordinates and of the partitioning line are considered when the spatial neighbor positions , , , and are derived. This is achieved by virtually reassigning the top-left (), top-right () and bottom-left (BL) block coordinates depending on the prediction segment index and the GEO coordinates. The current block width is samples and the current block height is samples.
· If the top side of the current block is sliced:
· For : ,
· For ,

· If the left side of the current block is sliced:
· For :
· For

An example is shown in Figure 13. [bookmark: _Ref509566749]Figure 13: Spatial motion vector prediction using geometric partitioning.

Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328157]Intra prediction
Modifications for SDR
For geometrically partitioned blocks, a modified version of planar prediction is available, which is signaled by the value of the geo_inter_intra_flag. If the value is equal to 1, the modified planar prediction process is invoked.
Planar prediction, as used in HEVC and JEM performs bilinear interpolation of a target sample by using four reference samples. This is indicated in Figure 14.
For the modified planar prediction, four essential changes have been made to the planar prediction process and the reference sample set:
· The line buffer sizes for and have been increased from containing just one sample to N and M samples respectively for a block of size MxN.
· Depending on the coordinates of the partitioning line and the segment index, samples in the top and left line buffers for and can be replaced by weighted averages of samples.
· Depending on the coordinates of the partitioning line and the segment index, samples from can be mapped to and from to by transposition.
· Depending on the coordinates of the partitioning line and the segment index, samples from can be mapped to the adjacent position in (and vice versa) and from to the adjacent position in (and vice versa). [bookmark: _Ref508808978]Figure 14: Basic principle of planar prediction in HEVC and JEM, adapted for GEO blocks.

Replacement of samples by weighted averages (SRW)
If the GEO partition boundaries intersect the left and / or the top block boundaries, the SRW process is invoked. Depending on the index relating to the current segment , for which intra-prediction is performed, samples in the top and left line buffer adjacent to the other segment are replaced by weighted averages computed from samples directly adjacent to segment and the partitioning coordinates (and . This process is exemplified in Figure 15, where the samples at positions a, b and c as well as f, e and d are used to compute weighted averages and . The weighted averages replace the samples stored in the line buffers in ranges from to and to according to the following equations:

	 for

	(7)

	
	

	 for
	(8)

The ranges to and to are determined from the GEO line coordinates and the segment index as given in Table 28:

[bookmark: _Ref508809029]Table 28: Sample replacement ranges determined from GEO coordinates.
	Line buffer
	Replacement ranges

	
	Prediction of S0
	Prediction of S1

	
	 and
	 and

	
	 and
	 and

The following weighting is used for determining and :

	
	(9)

	

	(10)

Two different filters are defined to compute and , depending on the partitioning parameters and the availability of reference samples. The location of reference sample positions a, b and c as well as d, e and f can be directly derived from the partitioning parameters P0 and P1. An overview is given in Table 29 below:

[bookmark: _Ref508809049]Table 29: Derivation of reference sample positions from GEO coordinates.
	Weighted sample
	Reference sample positions

	
	Prediction of S0
	Prediction of S1

	
	a = ptop[xP1-1]
b = ptop[xP1-2]
c = ptop[xP1-3]
	a = ptop[xP1+0]
b = ptop[xP1+1]
c = ptop[xP1+2]

	
	d = pleft[yP0-1]
e = pleft[yP0-2]
f = pleft[yP0-3]
	d = pleft[yP0+0]
e = pleft[yP0+1]
f = pleft[yP0+2]

[bookmark: _Ref508809001]Figure 15: Example of sample replacement by weighted average.

Replacement of samples by transposition (SRT)
For certain geometric partitioning configurations, the reference sample replacement by weighted average cannot be utilized. This is the case if at least one coordinate pair of the partitioning line is not located on the left or top border of the current block. Such cases are denoted as “unconnected edges”.

For these cases, reference samples from the top and / or left line buffer are copied to the bottom and/or right line buffer, respectively, to make them available for planar prediction. Unlike in HEVC and in the unmodified JEM software, the bottom and right line buffers now may contain more than one sample (compare Figure 14). This method is motivated by the fact, that the partitioning line of the current block can be linearly extended and intercept points with the left and top line buffers can be calculated. This is exemplified in Figure 16. Reference samples, which are located in right of the intercept point or in below the intercept point are more likely to be suited for the prediction process of a specific segment.
In the proposed algorithm, the projection process from to and to is realized as a simple transposition:

	
	(11)

	
	(12)

[bookmark: _Ref508809163]Figure 16: Transposition of samples from top to right and left to bottom line buffer for planar intra-prediction.

Reference sample copying to opposite line buffers (SRC)
Besides projecting reference samples from to and to , the line buffers and may still contain samples which likely belong to the other partition and shall not be used for prediction of the current partition (or vice versa). Thus, in this proposal, samples from are mapped to (or vice versa) and samples from are mapped to (or vice versa). This process is exemplified in Figure 17 for the prediction of S1 (white area). The re-mapped samples are indicated in light grey and correspond to their opposing neighbor samples.
[bookmark: _Ref508809251]Figure 17: Copying of samples from bottom to top and right to left line buffer for planar intra-prediction

Application of SRW, SRT and SRC
Six different configurations for GEO are distinguished, which are determined without signalling, depending on the GEO coordinates , :
1. left-top (LT) if left and top block boundaries are sliced.
2. left-right (LR) if left and right block boundaries are sliced.
3. left-bottom (LB) if left and bottom block boundaries are sliced.
4. top-right (TR) if top and right block boundaries are sliced.
5. top-bottom (TB) if top and bottom block boundaries are sliced.
6. bottom-right (BR) if bottom and right block boundaries are sliced.
Further, the block edges are handled in the following way:
· (0, 0) --> handled as left
· (M, 0) --> handled as top
· (0, N) --> handled as left
· (M, N) --> handled as right
The following Table 30 indicates which of the aforementioned processes are used before planar prediction is used depending on the GEO configuration and the segment index:

[bookmark: _Ref508809282][bookmark: _Hlk509324448]Table 30: Determination of subsequent sample replacement processes applied to the reference sample set for intra-prediction with GEO blocks.
	GEO configuration
	Application of sample replacement processes

	
	Prediction of S0
	Prediction of S1

	LT
	-
	SRW

	LR
	SRW
	SRW

	LB
	SRW
	SRT

	TR
	SRW
	SRT, SRC()

	TB
	SRW
	SRW, SRC()

	BR
	-
	SRT, SRC(), SRC()

Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328158]In-loop filtering
Modifications for SDR
No changes compared to JEM 7.0.
Modifications for 360° video
See section 2.2.
[bookmark: _Toc510328159]Additional tools
[bookmark: _Ref509488292]SDR: Geometric partitioning related derivations
For parametrization of the geometric partitioning, the two-point form of a straight line using two coordinate points has been chosen. The two points denoted and are located on the boundary of the current GEO block and for illustration purposes anchored to the top-left corner of a each sample. The two points can occupy all samples along the border of the current block, e.g. and can have any value from 0...N and and can have any value from 0...M for a block of size MN. For assigning each (luma- or chroma-) sample of the current block to one of the two resulting partitions (or segments S0 and S1) a binary mask M(x, y) can be derived after the discrete line between and has been drawn.Figure 18: Parametrization of geometric partitioning.

In the proposal, the well-known Bresenham algorithm [6] is used to specify the samples which belong to the line from P0 to P1. These samples are regarded to be in the transition zone from the first segment to the second segment (see 2.1.7).
Algorithmically, there is no lower limit to the minimum number of samples that can compose a segment. The encoder however ensures that the lowest possible Manhattan distance between P0 and P1 is at least 8 samples regarding the luma component. Effectively, the smallest possible segment contains at least 8 luma samples.
Figure 19 gives an overview of how the coding of GEO partitioning information is performed in the proposal.[bookmark: _Ref508809387]Figure 19: Block diagram of the proposed GEO partitioning coding.

Geometric partitioning is disabled for blocks with width or height smaller than two configurable threshold values GEO_CU_W_GEQ and GEO_CU_H_GEQ, which were both set to a value of 8 luma samples for this proposal. This condition is checked by by geo_size_check(). If the condition is false, rectangular partitioning is used.
If the geo_size_check() returns true, the geo_cu_flag is coded, indicating whether the current coding unit is further geometrically partitioning. If the flag is true, geometric partitioning is activated and otherwise rectangular partitioning is used. Next, it is checked whether the width and height of the current block is larger than two threshold values GEO_CU_P_W_GEQ and GEO_CU_P_H_GEQ. This is performed by geo_prediction_mode_size_check(). If the condition is false, template-based prediction is utilized, meaning that a list of coordinate pairs defined in Table 13 is initialized. This is followed by the coding of the respective predictor index. If the condition is true, a geo_prediction_mode_flag is coded, which selects if template or temporal / spatial prediction is used. If the flag is equal to 0 template-based prediction is used and the template list is initialized. If the flag is equal to 1 temporal / spatial prediction is used and the temporal and spatial candidate list is initialized. This is again followed by a coding of the predictor index, which can now relate to two different lists. Subsequently, the process of partitioning refinement coding is invoked by geo_predictor_offset_coding().
GEO Refinement Coding using Offsets
The two coordinate offsets are integer values, which specify how the predicted partitioning coordinates PP0 and PP1 are moved along the boundary of the current block. This is exemplified in Figure 20.
[bookmark: _Ref508815153]Figure 20: Exemplified refinement of the predicted partitioning PP0 and PP1 to P0 and P1 using refinement values pP0 and pP1.

The final GEO coordinates can thus be derived in the following way, with the direction along the boundary given by Table 31:

	
	
	(13)

	
	
	(14)

[bookmark: _Ref508809603]Table 31: Derivation of GEO partitioning refinement direction depending on the sign of the offset value and position on the block boundary.
	Input parameters , M, N; i=0,1
	Direction of movement D

	Coordinate
	Coordinate
	Offset
	

	0
	0
	>0
	(1, 0)

	0
	0
	<0
	(0, 1)

	0 < < N
	0
	-
	(1, 0)

	N
	0
	>0
	(0, 1)

	N
	0
	<0
	(0, 1)

	N
	0 < < M
	-
	(0, 1)

	N
	M
	>0
	(1, 0)

	N
	M
	<0
	(0,1)

	0 < < N
	M
	-
	(1, 0)

	0
	M
	>0
	(0, 1)

	0
	M
	<0
	(1, 0)

	0
	0 < < M
	-
	(0, 1)

The parameter is a block size dependent quantization value which is calculated as:

	
	
	
	(15)

Partitioning Predictor Candidate List
The geometric partitioning is predicted using a candidate list of partitioning parameters, which are the two coordinates that define the partitioning line on the boundary of the current block. The candidate list can be composed either of the pre-defined templates or of temporal and spatial predictors. This prediction mode is determined by the value of geo_prediction_mode_flag. If the flag is equal to 0 or if it is not present, template-based prediction is used and the candidate list contains only the pre-defined templates. If the flag is equal to 1, the temporal / spatial candidates are derived from the temporal and spatial neighborhood.
Template-based Prediction
A total of 16 templates are available, which are defined above in Table 13. The partitioning coordinates are defined with 9bit precision. Figure 21 gives a visual representation of these templates for square blocks. For the current block, the coordinates with as defined in Table 13 are scaled according to the width and height of the current block:

	
	
	
	(16)

	
	
	
	(17)

Here, are the scaled partitioning line coordinates for template-based partitioning of the current block.
Temporal and Spatial Prediction[bookmark: _Ref508809636]Figure 21: Predefined templates used for the prediction of GEO coordinates.

A total of 10 temporal or spatial partitioning predictor candidates is available, which are added to one common list. The list is filled by temporal candidates first, which are derived by the temporal projection process detailed in a. below. As the projection process can generate multiple candidates, only a maximum of 5 temporal candidates are added to the list. After the projection process, spatial predictors are derived as described in b. below. Spatial prediction can generate a maximum of 5 predictors. It is noted, that no duplicate candidate is added to the list.

Figure 22: Spatial and temporal neighboring positions for GEO candidate derivation.

a. Temporal Prediction
Temporal prediction of the geometric partitioning parameters is performed by on-the-fly temporal projection of already coded geometrically partitioned blocks using the reference picture motion vector field and the stored partitioning coordinates. The method has some similarities with ATMVP in JEM. Figure 23: Basic concept of temporal projection of partitioning information using information from reference pictures.

Starting from the current GEO block in the current picture, the C1 position in the first reference picture (e.g. reference index equal to 0) is calculated. From this C1 position, a spiral-scan with a step-size of 4x4 luma samples is started as depicted in Figure 24. The spiral-scan continues until a position has been determined, which is part of a geometrically partitioned block . For this position, it is tested whether a valid motion vector is available. If this is the case, the motion vector and the relative temporal distances and are used to calculate a shift vector , which projects the GEO coordinates with which are belonging to the block .

	
	
	
	(18)

	
	
	
	(19)

	
	
	
	

The spiral scan is performed in a symmetric search windows of configurable size around the C1 position. For the proposal, the search window was configured such that 64x64=4096 4x4 elements of the motion vector field around C1 are scanned. The projection process terminates after this.
 [bookmark: _Ref508809687]Figure 24: On-the-fly projection process using a spiral-scan and reference picture information.

If the projected line defined by and slices the boundaries of the current block, the coordinates of the intersections of the projected line and the current block boundaries are added to the candidate list. The intersection of a line defined by and with a block boundary defined by two points and can be calculated in the following way, where denotes the point of intersection:

	
	
	
	[bookmark: _Ref508809762](20)

	
	
	
	[bookmark: _Ref508809773](21)

b. Spatial Prediction
Spatial predictor candidates are derived by testing the A0, A1, B0, B1, B2 positions, if they are part of a geometrically partitioned block. Additionally, the A2 position is also tested. The order of testing is the same as for AMVP and MERGE with motion vectors (e.g. A1, B1, B0, A0, B2 + A2). If a tested position is part of a geometrically partitioned block, the partitioning coordinates of the neighboring block linearly extended to determine if the intersect with any of the current block boundaries. This is performed using the Equations (20) and (21) as for temporal prediction. An example of such a spatial prediction is given in Figure 25. [bookmark: _Ref508815173]Figure 25: Example of a spatially predicted partitioning for the current GEO block.

[bookmark: _Toc510328160]Additional algorithmic description topic(s)
GEO has not been harmonized with all JEM tools (yet). Further, it is believed that certain inter-prediction tools should not be used in combination with GEO. The following tools are turned off if a block is using GEO, which implies that also no mode signalling is performed in these cases:
· IC
· BIO
· IMV
· AFFINE
· DMVR
· SUB PU TMVP

[bookmark: _Ref509841161][bookmark: _Toc510328161]360° Video
[bookmark: _Toc510328162]Projection format (including padding)
In this proposal, the equiangular cube projection format (EAC) is used as an example for an applicable cube projection format. The proposal description relies on this format in the following. It is noted that the description of the proposed tools can be extended to a generalized form which does not rely on a specific format. Here, the cube faces are arranged in a compact 3x2 layout, similar to the well-known compact cube layout, which consists of two connected 3x1 segments. The arrangement of the faces used in our proposal is shown in Figure 27. It has the same number of continuous and discontinuous boundaries as the default compact cube layout. In the chosen format one continuous region consists of the faces connected to a single corner of the cube. The other continuous region consists of the faces connected to the opposite corner of the cube.
[image:]
[bookmark: fig_cube_unfolded]Figure 26: Unfolded cube. All faces and boundaries are labeled. Boundaries have two sides, one side is marked as x, its paired boundary as x'.

[image:]
[bookmark: fig_cube_compact_mod]Figure 27: The compact 3x2 representation used for coding. Orientations shown relative to the unfolded
cube (Figure 26). Connected areas (without discontinuous boundaries) are shown in green and blue.
Note: The coded resolution was chosen such that the face resolution is a multiple of the maximum coding block size (128x128). Thereby, face boundaries are mapped to coding block boundaries. The description of the tools relies on this requirement.
The coded resolutions used for the different sequences are shown in

[bookmark: tab_coding_resolutions]Table 32. No padding of the faces was performed. No global rotation of the 360° video was performed.

Table 32: Coded resolutions for the different sequence
	
	Source Width
	Source Height
	Face Width
	Face Height
	Picture Width
	Picture Height

	Balboa
	6144
	3072
	1280
	1280
	3840
	2560

	Chairlift
	8192
	4096
	1280
	1280
	3840
	2560

	KiteFlite
	8192
	4096
	1280
	1280
	3840
	2560

	Harbor
	8192
	4096
	1280
	1280
	3840
	2560

	Trolley
	8192
	4096
	1280
	1280
	3840
	2560

[bookmark: _Toc504597743][bookmark: _Toc510328163]Quantization handling
No changes compared to JEM 7.0 with 360Lib 5.0.
[bookmark: _Toc504597744][bookmark: _Toc510328164]360° video specific decoding tools
The following terminology is used for the remainder of the document:
3D arrangement: arrangement of the coded pixels in the 3D geometry according to the projection format before being back-projected to the 3D sphere (e.g. the faces of a cube), including the identification of connected boundaries in the coding arrangement.
Coding arrangement: 2D arrangement of the coded pixels used for encoding.
Connected/Continuous boundary: Boundary, which is connecting faces in the coding arrangement and the faces are connected in the 3D arrangement (e.g. boundaries 7/7‘ in Figure 27).
Disconnected/Discontinuous boundary: Boundary, which is connecting faces in the coding arrangement and the faces are not connected in the 3D arrangement (e.g. boundaries 8/9 in Figure 27).
Two 360° specific coding tools are proposed:
· Face extension of reference pictures for motion compensation. For each cube face of the reference picture, an extended face is generated by projection of the other faces to its image plane. This extended face is used for motion compensation instead of the original reference picture. The geometrically corrected reference allows motion compensation from blocks ranging across the face boundaries.
· Modification of loop filters for mitigating artifacts at and across face boundaries: The operation of the deblocking filter is modified to use the pixels of the neighboring face in the 3D arrangement rather than the coding arrangement for deblocking across face boundaries.
In the proposal implementation, the following tools have been modified compared to the reference software:
· The operation of the Adaptive Loop Filter is disabled at face boundaries.
· Overlapped Block Motion Compensation is disabled at face boundaries.
[bookmark: _Ref509501668]Face extension of reference pictures
First, it will be described how to project a face of a convex polytope to another face of the same polytope. Then the concrete method for the case of the cube is detailed. Two possible realizations of the face extension implementation, comprising a reference picture based method and an on-the-fly method, are described in Section 2.2.3.1.2. The proposed method is essentially the same as proposed in [4] and [5], but applied to the EAC format instead of plain cubemap projection (CMP).
General projection method for convex polytopes
The following generic face arrangement is assumed (Figure 28): Two connected faces of a polytope are given, face A and face B and the angle between the faces is known. Content of face B will be projected to face A under the constraint that both image planes share the same camera center. Further, the camera calibration matrices corresponding to the images planes A and B, and are known. Then the projection can be done with three consecutive steps:
· The point on the neighbor face B is projected to a 3D point . The distance of this point from the camera is arbitrary. Since all faces share the same camera center, points can be projected between faces without knowledge of the distance from the camera.

· The coordinate system is changed from the image plane of the neighbor face B to the image plane of the current face A. This is a rotation around the shared boundary of the faces. It depends only on the angle between the faces. The 3D point can now be expressed as a 3D point in respect to face A, :

· The 3D point is projected to a point on face A. Note that this removes from the homography:

The complete homography can be derived by applying all steps together:

[image:]
[bookmark: fig_general_method]Figure 28: The image of face B can be projected to extend the image of face B

[bookmark: _Ref510095985]Method for cube-based projection formats
The concrete method for the extension of cube faces is as follows. It is assumed that all cube faces share the same resolution. Further, the principal point of the image plane associated with a face shall lie in the center of the respective faces. Then the camera calibration matrices are:

By geometrical considerations, the value of is determined to be , where is the width of a face (Figure 29).
[image:]
[bookmark: fig_cube_focal_length]Figure 29: The relationship between focal length f (red) and face width w is defined by the geometry of the cube. C is the center of the cube and the camera center of all faces.
The derivation of the homography matrix is shown for the case that image plane A shall be the x-y plane, while image plane B lies in the y-z plane (as in Figure 28). Then the transformation aligning them is a rotation around the y-axis by . Thus the resulting homography for the projection of face B to face A is:

Note that the scaling factor can been removed, since homogeneous coordinates are defined only up to scale. This avoids division operations until coordinate normalization. The homographies for the other neighboring faces can be obtained in a similar manner.

Every cube face (called main face here) is extended using its four neighboring faces (Figure 30). Here, the term neighbors refers to faces which share boundaries in the assembled cube. Note that they do not necessarily need to share a boundary in the coding arrangement (compare Figure 26 and Figure 27).
[image:][image:] [bookmark: fig_cuge_neigh_and_extension]Figure 30: Left: Original cube face and its neighbors. Right: Cube face with extension by projection of the neighboring faces

For a given block the extension is generated as follows: If the block lies inside the main face no modification is necessary. If the block lies partly or complete in an extended region, coordinates of each pixel in the block are back projected to pixel coordinates in the main face and the neighboring faces. In the submitted implementation, this is done using floating point operations. Lanczos3 interpolation is then performed to retrieve the correct Luma value for a pixel, while Lanczos2 interpolation is used for Chroma values. Obviously, this method can be applied on the fly. It is assumed that it is always better to use the extended region for a block, which is Inter predicted from a block that lies across face boundaries or that is completely in another face. Thus, the method is always applied and no additional signalling is needed. It is only applied for modifying the used Inter predictors. Intra prediction remains unchanged.
As an alternative to the on-the-fly application the extension can be generated once for each reference picture. This does not require changes on the block level. Various implementations are possible, which require different amounts of memory. Figure 31 shows a modified reference picture. It only contains the extended face of one of the cube faces. As can be seen it overlaps with the area of the other cube faces. It is thus necessary to store one modified reference picture for each of the cube faces (6 modified reference pictures). The modified reference pictures are then used by transparently replacing the applicable reference picture with the corresponding modified reference picture. Which of the modified reference pictures is used can be determined by checking in which of the cube faces the currently coded block is located. The replacement is performed for the all reference pictures in the reference picture list of the current picture.
NOTE: This proposal used the second described implementation using additional reference pictures for the different faces. Each face has been extended by the maximum coding unit width/height plus 16 on all sides. (This is the same size as is used for padding of the picture borders.)
The decoder performance can likely be improved by using an on-the-fly implementation. Further, it may be beneficial to use other interpolation filters (HM/JEM interpolation filters) than Lanczos.

This method also accounts for the “wrapping around” of the 360° video. Each face boundary can be extended with information from its neighbors (also those at picture boundaries).

 [image:]
[bookmark: fig_extendedPicInFrame]Figure 31: An extended cube face is stored in a modified reference picture at the same position it has in the original picture. The extension is also applied to the picture boundaries, which are conventionally generated by value replication. Here the picture boundaries are filled with data from the neighboring faces.
A more efficient implementation does not need to store a whole frame for each extended face. Instead it is sufficient to store the extended regions for the faces of the top half of the picture. The allocated memory can later be reused for the extended regions of the faces in the bottom half of the picture (Figure 32).
[image:]
[bookmark: fig_extendedPicInFrame_reducedMem]Figure 32: Extended regions required with an implementation focusing on a small memory footprint. The extended regions are shown for the compact EAC face arrangement shown in Figure 27.
Note that the proposed method of using extended regions for correct motion compensation in 360° video is also applicable for other coding formats. It can be readily applied for octahedron or icosahedron. Further it can be used for ERP, where the left picture boundary is connected (in the 3D arrangement) to the right image boundary.
[bookmark: _Ref509501700]Geometry corrected deblocking filter
The deblocking filter (DBF) is modified for blocks located at face boundaries. Conceptually, the operations accessing pixels in the neighboring block are modified in this case such that the correct pixels from the block which is connected according to the 3D arrangement are used. The boundary strength parameter is set to 2 for blocks at face boundaries. It has to be noted that with this concept, deblocking is also enabled for the top and left picture boundaries.
The modifications in detail as delta to HEVC are shown below. There are additional changes in JEM compared to HM, which affect the deblocking filter:
· QTBT
· Additional precision for MV storage (JVET_B058)
· Adaptive clipping
None of these tools affect the locations of the pixels used by the DBF.
The proposed changes are shown below. It is assumed, that a cube based format is used and that the coding face size is a multiple of the maximum coding unit size. :
NOTE: The method can also be used for other coding formats (e.g. ERP) using similar constraints on the coding resolution. However, it requires adaptation for coding formats with face boundaries that are not aligned horizontally or vertically (e.g. octahedron, icosahedron).
The method could also be implemented as a separate loop filter.
In clause 8.7.2.1 (General):
The derivation of the variable filterLeftCbEdgeFlag is modified:
The variable filterLeftCbEdgeFlag is derived as follows:
· If one or more of the following conditions are true, filterLeftCbEdgeFlag is set equal to 0:
· The left boundary of the current luma coding block is the left boundary of the picture.
· The left boundary of the current luma coding block is the left boundary of the tile and loop_filter_across_tiles_enabled_flag is equal to 0.
· The left boundary of the current luma coding block is the left boundary of the slice and slice_loop_filter_across_slices_enabled_flag is equal to 0.
· Otherwise, filterLeftCbEdgeFlag is set equal to 1.

The derivation of the variable filterTopCbEdgeFlag is modified:
The variable filterTopCbEdgeFlag is derived as follows:
· If one or more of the following conditions are true, the variable filterTopCbEdgeFlag is set equal to 0:
· The top boundary of the current luma coding block is the top boundary of the picture.
· The top boundary of the current luma coding block is the top boundary of the tile and loop_filter_across_tiles_enabled_flag is equal to 0.
· The top boundary of the current luma coding block is the top boundary of the slice and slice_loop_filter_across_slices_enabled_flag is equal to 0.
· Otherwise, the variable filterTopCbEdgeFlag is set equal to 1.

In clause 8.7.2.4 (Derivation process of boundary filtering strength):
· If the sample p0 or q0 is in the luma coding block of a coding unit coded with intra prediction mode, bS[xDi][yDj] is set equal to 2.
· If the coding block is located at a face boundary, bS[xDi][yDj] is set equal to 2.
· Otherwise, if the block edge is also a transform block edge and the sample p0 or q0 is in a luma transform block which contains one or more non-zero transform coefficient levels, bS[xDi][yDj] is set equal to 1.
All further modifications make use of a GeometryLookupTable, which is described further below.
In clause 8.7.2.5.3 (Decision process for luma block edges):
(8-346) is changed to:
	correspondingLocation = GeometryLookupTable[xCb + xBl − i − 1][yCb + yBl + k]
	p[i][k] = recPictureL[correspondingLocation[0]] [correspondingLocation[1]]
(8-348) is changed to:
	correspondingLocation = GeometryLookupTable[xCb + xBl + k][yCb + yBl − i − 1]
	p[i][k] = recPictureL[correspondingLocation[0]] [correspondingLocation[1]]

(8-349) is changed. If QpP is not available (may happen at top and left picture boundary), the value of QpQ is used for QpP.
In clause 8.7.2.5.4 (Filtering process for luma block edges):
(8-373) is changed to:
	correspondingLocation = GeometryLookupTable[xCb + xBl − i − 1][yCb + yBl + k]
	p[i][k] = recPictureL[correspondingLocation[0]] [correspondingLocation[1]]
(8-374) is changed to:
	correspondingLocation = GeometryLookupTable[xCb + xBl − i − 1][yCb + yBl + k]
	recPictureL[correspondingLocation[0]] [correspondingLocation[1]] = pi'
(8-377) is changed to:
	correspondingLocation = GeometryLookupTable[xCb + xBl + k][yCb + yBl − i − 1]
	p[i][k] = recPictureL[correspondingLocation[0]] [correspondingLocation[1]]
(8-378) is changed to:
	correspondingLocation = GeometryLookupTable[xCb + xBl + k][yCb + yBl − i − 1]
	recPictureL[correspondingLocation[0]] [correspondingLocation[1]] = pi'
In clause 8.7.2.5.5 (Filtering process for chroma block edges):
(8-381) is changed to:
correspondingLocation = GeometryLookupTable[xCb + xBl − i − 1][yCb + yBl + k]
p[i][k] = s′[correspondingLocation[0]] [correspondingLocation[1]]
(8-383) is changed to:
correspondingLocation = GeometryLookupTable[xCb + xBl + k][yCb + yBl − i − 1]
p[i][k] = s′[correspondingLocation[0]] [correspondingLocation[1]]
(8-384) is changed. If QpP is not available (may happen at top and left picture boundary), the value of QpQ is used for QpP.
(8-388) is changed to:
correspondingLocation = GeometryLookupTable[xCb + xBl − 1][yCb + yBl + k]
s′[correspondingLocation[0]] [correspondingLocation[1]] = p0′
(8-390) is changed to:
correspondingLocation = GeometryLookupTable[xCb + xBl + k][yCb + yBl − 1]
s′[correspondingLocation[0]] [correspondingLocation[1]] = p0′
GeometryLookupTable
The lookup table identifies the pixels of the neighboring faces in the 3D arrangement for each face of coding arrangement. Up to 4 neighboring pixels are required for the loop filtering process. Therefore, for an area of 4 pixels around each face a look up table is created. A possible process to create this lookup table is described by the following pseudo-code. Input to the process is the cube face arrangement signalled in the PPS.
For each face in the signalled arrangement
For each component (Y,Cb,Cr)
For each boundary of the face
1. Determine start location x,y of the boundary, its orientation and its length (from signalled arrangement)
2. Determine the start location x,y of the boundary connected in the 3D representation of the cube, its orientation and its length (from signalled arrangement)
3. For each pixel xi, yi in the region of size x 4 pixels next to the face boundary
a. Find the corresponding location xi’, yi’ in the coding arrangement in the connected face, taking into account possibly different orientation of the boundaries in the coding arrangement
b. Store the corresponding location xi’, yi’ in the lookup table for coordinate xi, yi
NOTE: The GeometryLookupTable for the chroma components can also be derived from the GeometryLookupTable for the luma component.
The process yields a lookup table for each component for each face:
	x’ = GeometryLookupTable[x][y][0]
	y’ = GeometryLookupTable[x][y][1]
For a given x, y coordinate in the picture the look up table returns the coordinate x’, y’ to the geometry corrected pixel. This coordinate is directly used to retrieve the value of the pixel in the decoded picture buffer.
Compare Figure 33 below: For a pixel above the top boundary of face E (9’) the lookup table will return the corresponding pixel on the right boundary of face A (1). In the proposal, the lookup table has been implemented for the face arrangement shown in Figure 27. A generic implementation is possible by integrating the method e.g. with the 360Lib extension.
Note that the proposed method of modifying the deblocking filter to obtain correct deblocking of 360° content is also applicable for other coding formats. For example, in ERP a block on the left picture boundary can be deblocked using the block of the same vertical location at the right picture boundary.
[bookmark: _Ref509501710]Adaptation of further tools
ALF and OBMC have been modified compared to JEM. The adaptation is described relative to the packing format that has been used in the proposal. The operation of ALF and OBMC has been specifically changed at discontinuous face boundaries. Discontinuous face boundaries are face boundaries in the coding face arrangement for which the two faces are not connected in the 3D representation of the cube. The discontinuous face boundaries for the used packing format are shown in Figure 33. Here, the boundaries are denoted as 1/10’, 9’/1’, and 8/9.
[image:]
[bookmark: fig_cube_compact_discBorders]Figure 33: The compact 3x2 representation used for coding. Red: Discontinuous face boundaries. These between green and blue highlighted faces do not exist in the 3D representation of the cube.
Adaptation of ALF at discontinuous face boundaries
ALF has been disabled for discontinuous face boundaries.
Adaptation of OBMC at discontinuous face boundaries
OBMC has been disabled for blocks located next to discontinuous face boundaries.
[bookmark: _Toc510328165]HDR
[bookmark: _Toc510328166]Post-processing
[bookmark: _Toc510328167][bookmark: _Toc504407281][bookmark: _Toc504407429][bookmark: _Toc504414284][bookmark: _Toc504414428][bookmark: _Toc504414605][bookmark: _Toc504419913][bookmark: _Toc504420064][bookmark: _Toc504422390][bookmark: _Toc504486645][bookmark: _Toc504405739][bookmark: _Toc504405884][bookmark: _Toc504406029][bookmark: _Toc504414285][bookmark: _Toc504414429][bookmark: _Toc504414606][bookmark: _Toc504419914][bookmark: _Toc504420065][bookmark: _Toc504422391][bookmark: _Toc504486646][bookmark: _Toc504405740][bookmark: _Toc504405885][bookmark: _Toc504406030][bookmark: _Toc504414286][bookmark: _Toc504414430][bookmark: _Toc504414607][bookmark: _Toc504419915][bookmark: _Toc504420066][bookmark: _Toc504422392][bookmark: _Toc504486647][bookmark: _Toc504405741][bookmark: _Toc504405886][bookmark: _Toc504406031][bookmark: _Toc504414287][bookmark: _Toc504414431][bookmark: _Toc504414608][bookmark: _Toc504419916][bookmark: _Toc504420067][bookmark: _Toc504422393][bookmark: _Toc504486648]Quantization handling
[bookmark: _Toc510328168]HDR specific decoding tools

[bookmark: _Toc510328169]Encoder algorithm description
[bookmark: _Toc504385851][bookmark: _Toc504386016][bookmark: _Toc496601789][bookmark: _Toc510328170]General algorithm description
Modifications for SDR
The general encoder structure is identical to the JEM 7.0 encoder. Geometric partitioning is tested as an additional coding tool at the CU-level for every QTBT coding unit, if the CU has a required minimum size as described above. The GEO mode is tested following the other CU-level modes of JEM as shown in Figure 34 and is chosen if the RD-cost of the GEO block is lower than the RD-cost of the lowest previous tested mode. [bookmark: _Ref508809814]Figure 34: Mode decisions in JEM 7.0 with additional GEO coding tool.

Modifications for 360° video
Motion estimation and compensation processes are applied to the padded faces of the reference pictures.
[bookmark: _Toc510328171]Rate-distortion optimization
Modifications for SDR
Distortion metrics
The same distortion metrics are used (e.g. SAD and SATD). For sub-pixel motion estimation using geometrically partitioned blocks, SATD is turned off and SAD is used instead.
Rate-distortion dependency models
Inter prediction mode decisions in JEM is based on the following RD-model:

	
	
	
	(22)

	
	
	
	(23)

	
	
	
	(24)

For determining the optimal GEO partitioning in the motion estimation (ME) stage, the lambda is modified in the following way:

	
	
	
	(25)

The value is configurable in the encoder config. For the CfP, the value was set to .
Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328172]Partitioning structure selection
Modifications for SDRFigure 35: Block level coding decisions for GEO performed in two separate stages as in JEM for rectangular blocks

The optimal geometric partitioning is determined by an iterative search strategy. Motion estimation is performed for different GEO coordinates and the resulting combined RD-costs for both segments are compared. The GEO coordinates which give the lowest RD-costs are chosen. It is noted that the partitioning structure selection for GEO is selected without estimating the transform costs and is therefore solely based on the distortion given by the motion compensated prediction and the rate needed for coding the motion information (AMVP or Merge or FRUC for both segments) and the rate needed for signaling the GEO coordinates.

The estimation process for the best GEO partitioning is split into two parts:
1. From the list of pre-defined partitioning templates, the first templates are tested and motion estimation is performed. The parameters of the best (in terms of RD-cost) template are stored.
2. The list of temporal / spatial predictors is generated as described above in 2.1.3.7 and the predictor candidates are added to a second list of partitioning candidates together with the best template parameters from the first step. Using this partitioning candidate list, an iterative refinement is performed for the first candidates from the list. In every refinement step, the GEO partitioning is slightly modified using a step size and motion estimation is performed for the modified partitioning. It is noted that in this stage, only integer motion estimation is performed. The best (in terms of RD-cost) partitioning refinement is stored.
For step 1, maxT is set to 8, if the block size (width and height) is larger or equal than the threshold values GEO_CU_P_W and values GEO_CU_P_H and set to 16 if smaller. For the smaller blocks as defined by the threshold values, step 2 is omitted as no refinement of the partitioning is applied.
For step 2, is set to 2 in the proposal, which means that only the best template is further refined and the first temporal / spatial predictor.
Figure 36 exemplifies the estimation process for step 1 and Figure 37 exemplifies the process for step 2.

[bookmark: _Ref508809983]Figure 36: Estimation of the best template by testing a maximum of maxT templates.

[bookmark: _Ref508810102]Figure 37: Estimation of the partitioning refinement for GEO blocks by an iterative search strategy.

A visual example of the hierarchical refinement estimation is shown in Figure 38. The partitioning line coordinates and which are taken from the candidate list are moved along the boundary by and such that 9 possible GEO partitioning configurations are tested in one iteration. For each possible configuration motion estimation is performed. The GEO coordinates of the best configuration in terms of RD-cost are stored and used to initialize the next iteration.

	 	 s=0, 1
	
	
	(26)

In the next iteration step, the step size is divided by two and the same procedure is repeated. This process is repeated until the refinement step size is equal to 1.

 Modifications for 360° video[bookmark: _Ref508810670]Figure 38: Partitioning refinement by iteratively decreasing the refinement step size dr and testing all possible combinations using Motion Estimation.

No changes compared to JEM 7.0.
[bookmark: _Toc510328173]Intra prediction mode estimation and type selection
Modifications for SDR
Intra prediction for GEO blocks is tested next to inter prediction based on an RD-cost measure disregarding the cost for transform coefficients. This means that for every GEO configuration as described above, intra prediction using the modified planar prediction method is tested. The mode decision is made for each segment separately.
Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328174]Motion estimation and motion segment selection
Modifications for SDR
General
Motion estimation is performed on each segment separately. This is achieved by the same block-matching-algorithm (BMA) as used for rectangular blocks and using a masked SAD as shown in Equation (27), which only computes the SAD for those samples which are defined to belong to the current GEO partition. This is implemented by supplying the BMA an invalidated original (e.g. setting the luma sample values which are outside of the current partition to an invalid value, for example the value -1). The distortion summation for the BMA (e.g. SAD) has been adapted to only take valid samples into account.

	
	
	
	[bookmark: _Ref508812932](27)

Usage of decoder-side motion refinement
No changes compared to JEM 7.0. As the GEO boundaries are not regarded, the FRUC derived motion vector for rectangular blocks is made available for each GEO partition.
Modifications for 360° video
General
See 2.2.3.1.
Usage of decoder-side motion refinement
No changes compared to JEM 7.0
[bookmark: _Toc510328175]Mode decisions
Mode decisions for SDR
No changes compared to JEM 7.0.
Mode decisions for 360° video
See section 3.2.2.1.2.
[bookmark: _Toc510328176]In-loop filtering type selection and parameter estimation
Modifications for SDR
No changes compared to JEM 7.0.
Modifications for 360° video
See 2.2.3.2.
[bookmark: _Toc510328177]Transforms and transform type selection
Modifications for SDR
Decision is based on lowest RD-cost tested for all four different transform coding options as specified in 2.1.3.5. Essentially, the transform mode decision is made in a very similar manner as for EMT.
Modifications for 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328178]Quantization and quantization type selection for SDR and 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328179]Entropy coding for SDR and 360° video
No changes compared to JEM 7.0.
[bookmark: _Toc510328180]Additional tools
Modifications for SDR
No changes compared to JEM 7.0.
Modifications for 360° video
See 2.2.3.3.
[bookmark: _Toc510328181]Additional encoder optimization
Modifications for SDR
The following three ad-hoc methods are combined in order to achieve a faster termination of the GEO estimation process:
1. Geometric partitioning is skipped for all pictures which either have an odd POC or if they have a temporal layer id which is greater or equal to TL_GEQ_SKIP. For the CfP submission, this value was set to 5. Effectively, this skips geometric partitioning for every second frame for both RA and LD configuration.

2. Geometric partitioning is skipped if the square root of the weighted pixel variance of the original block is smaller than a pre-defined threshold . This method is adapted from “Q. Wang, X. Ji, M. T. Sun, G. J. Sullivan, J. Li, and Q. Dai, “Complexity reduction and performance improvement for geometry partitioning in video coding,” IEEE Transactions on Circuits and Systems for Video, Technology, vol. 23, no. 2, pp. 338–352, Feb 2013.”

	
	
	
	(28)

	
	
	
	(29)

The standard deviation is computed from a weighted average of the standard deviations for each component (e.g. , and). For the CfP submission, the value is set to 10.

3. Geometric partitioning is skipped if the lowest RD-cost determined by the Merge / Skip mode test (Affine Merge, Merge and Merge FRUC) relative to the lowest RD-cost determined by the Inter ME stage (compare Figure 34) is smaller than a pre-defined threshold . For the CfP submission, the value is set to 0.85.

	
	
	
	(30)

It should be noted that these methods obtained a decrease in encoder runtime with marginal performance loss. It is expected that further improvement is expected to be possible by additional approaches.

[bookmark: _Toc510328182]Additional algorithmic description topic(s)
[bookmark: _Toc504385865][bookmark: _Toc504386030][bookmark: _Toc504385867][bookmark: _Toc504386032][bookmark: _Toc504385870][bookmark: _Toc504386035][bookmark: _Toc504385871][bookmark: _Toc504386036][bookmark: _Toc504385872][bookmark: _Toc504386037][bookmark: _Toc504385873][bookmark: _Toc504386038][bookmark: _Toc504385874][bookmark: _Toc504386039][bookmark: _Toc504385875][bookmark: _Toc504386040][bookmark: _Toc504385876][bookmark: _Toc504386041][bookmark: _Toc504385878][bookmark: _Toc504386043]n/a
[bookmark: _Toc510328183]360°
The coded resolution was chosen such that the face resolution is a multiple of the maximum coding block size (128x128). This avoids conflicts with the tools proposed, as these only apply at CTU boundaries in this configuration. This choice further simplifies the implementation and description complexity of the proposed tools.
[bookmark: _Toc504597764][bookmark: _Toc510328184][bookmark: _Toc504385881][bookmark: _Toc504386046][bookmark: _Toc504385884][bookmark: _Toc504386049]Usage of projection format adaptation
[bookmark: _Toc504597765][bookmark: _Toc510328185]360° Video specific encoding tools
Motion estimation and motion segment selection
General
Face extension of reference pictures was used in order to achieve a geometry corrected motion compensation, as described above. Accordingly, motion estimation is also performed using the extended faces.
[bookmark: _Ref509842313]Mode decisions
OBMC was deactivated at discontinuous face boundaries as described above.
In-loop filtering type selection and parameter estimation
The deblocking filter was modified to achieve a geometry corrected deblocking, as described above.
ALF was deactivated at discontinuous face boundaries as described above.
[bookmark: _Toc504597766][bookmark: _Toc510328186]Additional encoder optimization
n/a
[bookmark: _Toc510328187]HDR
[bookmark: _Toc504385890][bookmark: _Toc504386055]n/a
[bookmark: _Toc510328188]Compression performance
[bookmark: _Toc510328189]SDR: Constraint set 1 configuration relative to HM anchor
[bookmark: _Toc510328190]Class SDR-A (RD-curves)
[image:][image:][image:][image:][image:]
[bookmark: _Toc510328191]Class SDR-B (RD-curves)
[image:][image:][image:][image:][image:]
[bookmark: _Toc510328192]Overall (BD-rate summary tables)
	
	
	
	
	
	
	

	
	Constraint Set 1

	
	Over HM16.16

	
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)

	FoodMarket4
	-33.82%
	-44.46%
	-47.67%
	1.69
	1.29
	1.51

	CatRobot1
	-39.99%
	-53.87%
	-47.12%
	1.61
	1.00
	1.35

	DaylightRoad2
	-41.20%
	-58.12%
	-42.54%
	1.16
	1.25
	0.79

	ParkRunning3
	-31.92%
	-26.22%
	-28.99%
	1.02
	0.45
	0.41

	Campfire
	-35.08%
	-35.36%
	-50.23%
	1.03
	1.33
	1.55

	BQTerrace
	-30.48%
	-45.44%
	-54.59%
	0.92
	0.82
	1.03

	RitualDance
	-27.79%
	-37.74%
	-41.19%
	1.48
	1.08
	1.34

	MarketPlace
	-30.24%
	-48.88%
	-46.46%
	1.06
	0.87
	0.85

	BasketballDrive
	-31.26%
	-45.86%
	-43.43%
	1.12
	1.01
	1.31

	Cactus
	-34.99%
	-45.59%
	-41.48%
	1.44
	0.73
	1.07

	Average SDR-A
	-36.40%
	-43.61%
	-43.31%
	1.30
	1.06
	1.12

	Average SDR-B
	-30.95%
	-44.70%
	-45.43%
	1.20
	0.90
	1.12

	Average all
	-33.68%
	-44.16%
	-44.37%
	1.25
	0.98
	1.12

	Enc Time[%]
	3347%

	Dec Time[%]
	927%

	Max Delta Rate[%]
	-0.17%

	Min Delta Rate[%]
	-9.42%

	Max Delta PSNR (YUV)
	2.03
	1.51
	1.77

	Min Delta PNSR (YUV)
	0.65
	0.41
	0.39

[bookmark: _Toc510328193]SDR: Constraint set 2 configuration relative to HM anchor
[bookmark: _Toc510328194]Class SDR-B
[image:][image:][image:][image:][image:]
[bookmark: _Toc510328195]Overall
	
	Constraint Set 2

	
	Over HM16.16

	
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)

	BQTerrace
	-26.88%
	-47.17%
	-51.20%
	0.80
	0.56
	0.61

	RitualDance
	-22.17%
	-35.53%
	-36.34%
	1.13
	0.86
	1.01

	MarketPlace
	-22.58%
	-45.06%
	-43.87%
	0.73
	0.59
	0.63

	BasketballDrive
	-25.64%
	-45.77%
	-43.56%
	0.96
	0.98
	1.28

	Cactus
	-28.67%
	-41.67%
	-39.30%
	1.15
	0.59
	0.87

	Average SDR-B
	-25.19%
	-43.04%
	-42.85%
	0.95
	0.72
	0.88

	Enc Time[%]
	#ZAHL!

	Dec Time[%]
	#ZAHL!

	Max Delta Rate
	-0.70%

	Min Delta Rate
	-7.16%

	Max Delta PSNR (YUV)
	1.21
	1.05
	1.37

	Min Delta PNSR (YUV)
	0.52
	0.46
	0.52

[bookmark: _Toc510328196]SDR: Constraint set 1 configuration relative to JEM anchor

[bookmark: _Toc510328197]Class SDR-A
[image:][image:][image:][image:][image:]
[bookmark: _Toc510328198]Class SDR-B
[image:][image:][image:][image:][image:]
[bookmark: _Toc510328199]Overall
	
	
	
	
	
	
	

	
	Constraint Set 1

	
	Over JEM7.0

	
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)

	FoodMarket4
	-0.74%
	-1.48%
	-1.67%
	0.03
	0.03
	0.04

	CatRobot1
	-1.21%
	-3.32%
	-2.39%
	0.03
	0.03
	0.04

	DaylightRoad2
	-1.48%
	-2.30%
	-2.33%
	0.03
	0.03
	0.03

	ParkRunning3
	-1.14%
	-1.42%
	-2.20%
	0.03
	0.02
	0.03

	Campfire
	-1.06%
	-1.16%
	-1.33%
	0.02
	0.04
	0.03

	BQTerrace
	-0.21%
	-0.15%
	-0.21%
	0.00
	0.00
	0.00

	RitualDance
	-0.62%
	-1.06%
	-1.00%
	0.03
	0.02
	0.02

	MarketPlace
	-1.47%
	-3.08%
	-3.50%
	0.04
	0.04
	0.05

	BasketballDrive
	-0.09%
	-0.61%
	-0.08%
	0.00
	0.01
	0.00

	Cactus
	0.07%
	-0.61%
	-0.47%
	0.00
	0.01
	0.01

	Average SDR-A
	-1.13%
	-1.94%
	-1.98%
	0.03
	0.03
	0.03

	Average SDR-B
	-0.46%
	-1.10%
	-1.05%
	0.02
	0.01
	0.02

	Average all
	-0.79%
	-1.52%
	-1.52%
	0.02
	0.02
	0.02

	Enc Time[%]
	420%

	Dec Time[%]
	122%

	Max Delta Rate[%]
	

	Min Delta Rate[%]
	

	Max Delta PSNR (YUV)
	0.02
	0.03
	0.04

	Min Delta PNSR (YUV)
	-0.14
	-0.07
	-0.15

[bookmark: _Toc510328200]SDR: Constraint set 2 configuration relative to JEM anchor
[bookmark: _Toc510328201]Class SDR-B
[image:][image:][image:][image:][image:]
[bookmark: _Toc510328202]Overall
	
	Constraint Set 2

	
	Over JEM7.0

	
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)

	BQTerrace
	-0.78%
	1.03%
	0.54%
	0.02
	0.00
	0.00

	RitualDance
	-0.58%
	-1.89%
	-1.30%
	0.03
	0.03
	0.03

	MarketPlace
	-2.40%
	-3.51%
	-4.43%
	0.07
	0.03
	0.05

	BasketballDrive
	0.04%
	-0.01%
	0.48%
	0.00
	0.00
	-0.01

	Cactus
	-0.47%
	1.49%
	0.70%
	0.02
	-0.01
	-0.01

	Average SDR-B
	-0.84%
	-0.58%
	-0.80%
	0.03
	0.01
	0.01

	Enc Time[%]
	#ZAHL!

	Dec Time[%]
	#ZAHL!

	Max Delta Rate
	

	Min Delta Rate
	

	Max Delta PSNR (YUV)
	0.01
	0.03
	0.03

	Min Delta PNSR (YUV)
	-0.06
	-0.06
	-0.05

[bookmark: _Toc510328203]HDR: Constraint set 1 configuration relative to HM anchor
n/a
[bookmark: _Toc504414330][bookmark: _Toc504414474][bookmark: _Toc504414651][bookmark: _Toc504419959][bookmark: _Toc504420110][bookmark: _Toc504422436][bookmark: _Toc504486691][bookmark: _Toc510328204]HDR: Constraint set 1 configuration relative to JEM anchor
n/a
[bookmark: _Toc510328205]360° Video: Constraint set 1 configuration relative to HM anchor
The same coded resolution applies to all sequences: 3840x2560. In the figures with rate-distortion curves the proposal is denoted as RHVC.
[bookmark: _Toc510328207]Class 360
[image:]
[image:]
[image:]
[image:]
[image:]
[bookmark: _Toc510328208]Overall
Table 33: Results measured against HM 16.16 PERP anchors
	
	Constraint Set 1

	
	Over HM16.16

	
	
E2E WS-PSNR

	
E2E SPSNR-NN

	
E2E WS-PSNR

	
E2E SPSNR-NN

	
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)

	Balboa
	-41.3%
	-50.7%
	-55.1%
	-41.7%
	-50.5%
	-54.8%
	1.75
	1.58
	1.66
	1.77
	1.56
	1.65

	Chairlift
	-46.9%
	-58.5%
	-55.3%
	-46.9%
	-58.5%
	-55.2%
	1.86
	2.07
	1.29
	1.87
	2.07
	1.28

	KiteFlite
	-22.8%
	-53.8%
	-62.0%
	-23.3%
	-53.7%
	-62.1%
	1.01
	1.97
	2.05
	1.03
	1.97
	2.06

	Harbor
	-25.5%
	-52.5%
	-51.5%
	-25.3%
	-52.5%
	-51.5%
	0.97
	2.00
	1.71
	0.96
	2.00
	1.71

	Trolley
	-21.5%
	-38.9%
	-45.4%
	-21.6%
	-38.6%
	-45.3%
	1.03
	1.71
	1.76
	1.04
	1.70
	1.76

	Average 360
	-31.6%
	-50.9%
	-53.9%
	-31.8%
	-50.7%
	-53.8%
	1.33
	1.87
	1.69
	1.33
	1.86
	1.69

	Enc Time[%]
	450% invalid due to imhomogeneous platforms

	Dec Time[%]
	1520%

	Max Delta Rate[%]
	0.0%

	Min Delta Rate[%]
	-1.1%

	Max Delta PSNR (YUV)
	
	
	
	
	
	
	1.97
	2.49
	2.31
	1.97
	2.48
	2.32

	Min Delta PNSR (YUV)
	
	
	
	
	
	
	0.82
	0.99
	1.00
	0.80
	0.98
	0.99

[bookmark: _Toc510328209]360° Video: Constraint set 1 configuration relative to JEM anchor
The same coded resolution applies to all sequences: 3840x2560. In the figures with rate-distortion curves the proposal is denoted as RHVC.
[bookmark: _Toc510328210]Class 360
[image:]
[image:]
[image:]
[image:]
[image:]
[bookmark: _Toc510328211]Overall
Table 34: Results measured against JEM 7.0 PERP anchors (runtimes were measured for proposal and HM. Runtime relative to JEM is estimated using the runtimes measured for the anchors as suggested.)
	
	Constraint Set 1

	
	Over JEM7.0

	
	
E2E WS-PSNR

	
E2E SPSNR-NN

	
E2E WS-PSNR

	
E2E SPSNR-NN

	
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)

	Balboa
	-9.2%
	-16.3%
	-15.6%
	-9.8%
	-15.5%
	-14.8%
	0.31
	0.25
	0.22
	0.33
	0.24
	0.20

	Chairlift
	-23.5%
	-17.1%
	-18.6%
	-23.5%
	-17.1%
	-18.5%
	0.79
	0.32
	0.26
	0.80
	0.32
	0.26

	KiteFlite
	-6.4%
	-12.5%
	-20.5%
	-6.9%
	-12.2%
	-20.5%
	0.26
	0.26
	0.38
	0.28
	0.25
	0.38

	Harbor
	-6.2%
	-12.6%
	-8.8%
	-6.1%
	-12.5%
	-9.1%
	0.23
	0.25
	0.15
	0.22
	0.25
	0.15

	Trolley
	-6.5%
	-6.8%
	-12.7%
	-6.6%
	-6.2%
	-12.7%
	0.31
	0.19
	0.29
	0.31
	0.18
	0.29

	Average 360
	-10.3%
	-13.0%
	-15.2%
	-10.6%
	-12.7%
	-15.1%
	0.38
	0.26
	0.26
	0.39
	0.25
	0.26

	Enc Time[%]
	56% invalid due to inhomogeneous platforms

	Dec Time[%]
	199%

	Max Delta Rate[%]
	0.0%

	Min Delta Rate[%]
	-1.1%

	Max Delta PSNR (YUV)
	
	
	
	
	
	
	0.91
	0.52
	0.54
	0.91
	0.51
	0.54

	Min Delta PNSR (YUV)
	
	
	
	
	
	
	0.05
	0.03
	0.05
	0.05
	0.01
	0.05

Table 35: Results measured against JEM 7.0 with same coding format and face arrangement
	
	Constraint Set 1

	
	Over JEM7.0 EAC modified face arrangment

	
	
E2E WS-PSNR

	
E2E SPSNR-NN

	
E2E WS-PSNR

	
E2E SPSNR-NN

	
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-rate(Y)
	BD-rate(U)
	BD-rate(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)
	BD-PSNR(Y)
	BD-PSNR(U)
	BD-PSNR(V)

	Balboa
	-3.7%
	-8.8%
	-9.4%
	-4.6%
	-8.8%
	-8.8%
	0.12
	0.13
	0.12
	0.15
	0.13
	0.11

	Chairlift
	-3.6%
	-3.1%
	-3.8%
	-3.6%
	-3.1%
	-3.8%
	0.11
	0.06
	0.05
	0.11
	0.06
	0.05

	KiteFlite
	0.0%
	0.0%
	-2.5%
	0.0%
	0.0%
	-2.5%
	0.00
	0.00
	0.04
	0.00
	0.00
	0.04

	Harbor
	-0.2%
	-4.7%
	-0.2%
	-0.2%
	-4.7%
	-0.2%
	0.01
	0.09
	0.00
	0.01
	0.09
	0.00

	Trolley
	-0.3%
	-0.7%
	-0.1%
	-0.1%
	-0.1%
	-0.1%
	0.02
	0.01
	0.00
	0.00
	0.00
	0.00

	Average 360
	-1.6%
	-3.5%
	-3.2%
	-1.7%
	-3.3%
	-3.1%
	0.05
	0.06
	0.04
	0.05
	0.05
	0.04

	Enc Time[%]
	99%

	Dec Time[%]
	174%

	Max Delta Rate[%]
	0.0%

	Min Delta Rate[%]
	-1.1%

	Max Delta PSNR (YUV)
	
	
	
	
	
	
	0.10
	0.10
	0.10
	0.10
	0.10
	0.10

	Min Delta PNSR (YUV)
	
	
	
	
	
	
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

[bookmark: _Toc510328212]360° Video: Projection format conversion only
Table 36: PSNR of conversion only / no coding	
	Test
	
	
	
	
	WS-PSNR (End to End)

	
	Source Width
	Source Height
	FW
	FH
	Y
	U
	V

	Balboa
	6144
	3072
	1280
	1280
	54.10
	61.10
	61.10

	Chairlift
	8192
	4096
	1280
	1280
	51.50
	60.20
	60.30

	KiteFlite
	8192
	4096
	1280
	1280
	47.90
	58.20
	58.20

	Harbor
	8192
	4096
	1280
	1280
	50.30
	59.60
	58.60

	Trolley
	8192
	4096
	1280
	1280
	46.80
	58.50
	58.40

	Overall
	
	
	
	
	50.12
	59.52
	59.32

[bookmark: _Toc510328213]Decoder complexity analysis
[bookmark: _Toc510328214]SDR specific complexity analysis
[bookmark: _Ref504385224][bookmark: _Toc510328215]Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by HM16.16
The decoding time increases on average to 122% relative to JEM 7.0 and increases on average to 927% relative to HM16.16 for the Constraint Set 1.
The decoding time increases on average to 104% relative to JEM 7.0 and increased on average to 696% relative to HM16.16 for the Constraint Set 2.
The maximum decoder runtime increases to 163% relative to JEM 7.0 and 1240% relative to HM16.16 for the Constraint Set 1.
The maximum decoder runtime increases to 183% relative to JEM 7.0 and 1217% relative to HM16.16 for the Constraint Set 2.
[bookmark: _Toc510328216]Description of computing platform used to determine decoding times reported in section 5.1.1
64-bit architecture was used and no multicore processing. Each decoder was run in a separate thread with a maximum of two threads per core. The tests are run using two identical servers with 20 cores and 512 GB of RAM each. Each machine has the following detailed specification:

CPU (20)
vendor_id: GenuineIntel
cpu family: 6
model: 63
model name: Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz
microcode: 0x36
cpu MHz: 3199.902
cache size: 25600 KB
flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm epb tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm ida arat pln pts
bogomips: 6200.46
clflush size: 64
cache_alignment: 64
address sizes: 46 bits physical, 48 bits virtual

RAM (16)
 Total Width: 72 bits
 Data Width: 64 bits
 Size: 32 GB
 Form Factor: DIMM
 Set: 1
 Locator: A1
 Bank Locator: Not Specified
 Type: DDR4
 Type Detail: Synchronous Registered (Buffered)
 Speed: 2133 MHz
 Manufacturer: 00CE00B300CE
 Serial Number: 419907FF
 Asset Tag: 00154430
 Part Number: M393A4K40BB0-CPB
 Rank: 2
 Configured Clock Speed: 2133 MHz
 Minimum Voltage: 1.2 V
 Maximum Voltage: 1.2 V
 Configured Voltage: 1.2 V
The decoding

HDD
Product Collection: Intel® SSD DC S3510 Series
Code Name: Products formerly Haleyville
Capacity: 120 GB
Sequential Read (up to): 475 MB/s
Sequential Write (up to): 135 MB/s
Random Read (100% Span): 68000 IOPS
Random Write (100% Span): 5300 IOPS
Latency – Read: 55 µs
Latency – Write: 66 µs

[bookmark: _Toc510328217]Memory usage of decoder
Table 37: Decoder memory usage for highest rate point.
	Set
	Decoder memory usage

	
	HM 16.16
	JEM 7.0
	JEM 7.0+GEO

	C1 (HD)
	330 MB
	476 MB
	1780 MB

	C1 (UHD)
	1042 MB
	1314 MB
	3670 MB

	C2 (HD)
	296 MB
	418 MB
	1676 MB

The measurements are based on the following sequences and rate points:
· C1 HD: RitualDance 3.8 Mbit/s
· C1 UHD: ParkRunning 10Mbit/s
· C2 HD: RitualDance 3.8 Mbit/s
Additional Comment
The high memory increase is explained by the fact, that all GEO related information is retained for all coding units in the current implementation. The biggest impact is due to the two binary masks for luma and chroma components, which are stored as 8-bit arrays and four prediction weighting masks (two each for luma and chroma components), which are also stored in 8-bit precision. The memory usage therefore can be greatly reduced by not saving this data, as it is only needed to perform transform coding and prediction for the current GEO block. The only information that needs to be retained with the reference pictures are the GEO partitioning parameters (e.g. the two coordinate points of 9bit precision and the syntax elements needed for context adaptive coding).
[bookmark: _Toc510328218]Complexity characteristics of decoder entropy decoding operation
No major changes compared to JEM 7.0 expected as entropy decoding is not modified. Additional syntax elements are decoded.
[bookmark: _Ref509408234][bookmark: _Toc510328219]Complexity characteristics of decoder inverse quantization
No changes compared to JEM 7.0 expected as inverse quantization is not modified.
[bookmark: _Toc510328220]Complexity characteristics of decoder inverse transform operation
SADCT transform is implemented in direct form, e.g. no butterfly or partial butterfly and no SSE vectorization is used. Further, a floating-point implementation is currently used. SADCT complexity largely depends on the actual shape.
Core SADCT
· Worst case shape (128x128 square): approx. 2xN2(N+(N−1)) float multiplications and additions with N=128, e.g. O(N3) as for two subsequent matrix multiplications
· Best case shape (one single sample): 2 float multiplications and 1 float addition

Further SADCT operations
Shift operations are needed, which are also shape-dependent
· Worst case shape (128x128 triangle): 16256 memory remappings (2xNx(N+1)/2 with N=127)
· Best case shape (128x128 square without one sample): 0 memory accesses
Further, the Delta-DC correction needs additional computational steps, which are also shape-dependent.
To access the relative complexity of the current SADCT implementation, a separate experiment was performed. In the experiment, the time it takes to compute 1000 SADCTs for a diagonal shaped partition was compared against the time it takes to compute 1000 DCTs. The experiment was conducted for the block sizes 8x8, 16x16, 32x32, 64x64 and 128x128 and repeated multiple times using an input image with a noisy distribution. Table 38 gives the average relative complexity of the SADCT over the DCT for both the inverse transform and the forward transform.

[bookmark: _Ref509396725]Table 38: Relative complexity measurement to assess the SADCT complexity for a single geometric partition.
	[bookmark: _Hlk509511493]Block size
	Relative Complexity SADCT vs. DCT

	
	Inverse Transform
	Forward Transform

	8x8
	41.02
	60.39

	16x16
	9.92
	11.81

	32x32
	3.85
	4.00

	64x64
	3.26
	10.19

	128x128
	2.14
	4.89

[bookmark: _Toc510328221]Complexity characteristics of decoder-side motion refinement
No changes compared to JEM 7.0 expected as decoder-side motion refinement is not modified but applied for GEO blocks in the same manner as for rectangular blocks.
[bookmark: _Toc510328222]Complexity characteristics of decoder motion compensation
[bookmark: _Toc504419980][bookmark: _Toc504420131][bookmark: _Toc504422456][bookmark: _Toc504486712][bookmark: _Toc504419981][bookmark: _Toc504420132][bookmark: _Toc504422457][bookmark: _Toc504486713][bookmark: _Toc504486715]The complexity for motion compensation increases due to the segment-wise motion compensation for GEO blocks. The motion compensation of a segment is currently performed on a rectangular block basis and only the pixels of the compensated block which are defined to be part of the segment are retained. Thus, to perform motion compensation for a GEO block, the number of interpolations needed essentially doubles compared to a non-GEO block, assuming both segments are inter-predicted. Additionally, the combination of both compensated segments using the partitioning dependent weighting matrix as described in 2.1.7 is performed, which is currently implemented on a per-sample basis. It is noted that this weighting can also be efficiently vectorized in a future update.
[bookmark: _Toc510328223]Complexity characteristics of decoder intra-frame prediction operation
The intra-frame prediction for GEO segments uses a modified version of the planar prediction process of HEVC and the JEM software. The planar prediction algorithm itself is not substantially modified. Additional complexity is potentially added by adaptively modifying the reference sample set depending on the shape of the current partitioning. The performance of the modified planar prediction was again accessed relative to unmodified version in JEM 7.0. A triangular shaped partition was generated, and the modified planar prediction process was performed 1000 times for a single partition. For comparison, the conventional JEM planar prediction process was also invoked 100 times for the entire block. The experiment was repeated multiple times for different block sizes.
Table 39:Relative complexity measurement to assess the intra-prediction complexity for a single geometric partition using the modified planar prediction process.
	Block size
	Relative Complexity of Mod. Planar Prediction vs. Planar Prediction

	8x8
	2.60

	16x16
	1.00

	32x32
	0.53

	64x64
	0.41

	128x128
	0.41

[bookmark: _Toc510328224]Complexity characteristics of decoder in-loop filtering operation
No changes compared to JEM 7.0 expected as in-loop filtering is not modified.
[bookmark: _Toc510328225]Complexity characteristics of additional decoder tools
No changes compared to JEM 7.0.
[bookmark: _Toc510328226]Complexity characteristics of 360° video specific decoding tools
Comparison to HM 16.16 with YUV output enabled and reference input disabled:
The decoding time against HM 16.16 is 1520% (199% against JEM 7.0) on average. The increased complexity is partly because more pixels have been coded as compared to the anchors. Coded resolution was 3840x2560 for all sequences, while for the anchors the coded resolution was 4096x2048 for all sequences. Thus, 1.17 times the number of pixels compared to the anchors have been coded.
Note: The measured times do not include conversion of the decoded YUV back to the input projection format (EAC to ERP).

[bookmark: _Ref509843070][bookmark: _Toc510328227]Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JEM7.0 with same coding arrangement
Comparison to JEM 7.0 with YUV output enabled and reference input disabled: Same coding arrangement and face resolution as for the proposal was used. Decoding time is 174% on average. This reflects the increased complexity due only to the usage of our tools, since the same number of pixels have been coded. The increase in encoding time is mainly due to the creation of additional reference pictures with extended faces for the purpose of motion compensation. The implementation of this process is very inefficient.

[bookmark: _Toc510328228]Description of computing platform used to determine decoding times reported in section 5.1.1
A 64-bit architecture was used and no multicore processing. Each machine ran Ubuntu 16.04. Each decoder was run in a separate thread with a maximum of two threads per core. The tests were run using a server with 20 cores and 512 GB of RAM. The machine has the following detailed specification:

CPU (20)
vendor_id: GenuineIntel
cpu family: 6
model: 63
model name: Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz
microcode: 0x36
cpu MHz: 3199.902
cache size: 25600 KB
flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm epb tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm ida arat pln pts
bogomips: 6200.46
clflush size: 64
cache_alignment: 64
address sizes: 46 bits physical, 48 bits virtual

RAM (16)
 Total Width: 72 bits
 Data Width: 64 bits
 Size: 32 GB
 Form Factor: DIMM
 Set: 1
 Locator: A1
 Bank Locator: Not Specified
 Type: DDR4
 Type Detail: Synchronous Registered (Buffered)
 Speed: 2133 MHz
 Manufacturer: 00CE00B300CE
 Serial Number: 419907FF
 Asset Tag: 00154430
 Part Number: M393A4K40BB0-CPB
 Rank: 2
 Configured Clock Speed: 2133 MHz
 Minimum Voltage: 1.2 V
 Maximum Voltage: 1.2 V
 Configured Voltage: 1.2 V
The decoding

HDD
Product Collection: Intel® SSD DC S3510 Series
Code Name: Products formerly Haleyville
Capacity: 120 GB
Sequential Read (up to): 475 MB/s
Sequential Write (up to): 135 MB/s
Random Read (100% Span): 68000 IOPS
Random Write (100% Span): 5300 IOPS
Latency – Read: 55 µs
Latency – Write: 66 µs

[bookmark: _Toc510328229]Memory usage of decoder
Coded resolution for all sequences: 3840x2560. Maximum required memory was 9.46 GB, while on average 9.45 GB of memory where required.
The memory requirement increases significantly in the chosen implementation, as the extended faces are stored as 6 additional reference pictures to simplify the motion compensation process. This is however an issue of the particular implementation. More efficient implementations may not need to store 6 additional pictures but could store only the data required for the small regions around each face. Another alternative is applying the compensation for each block on the fly. This would require no additional storage.
[bookmark: _Toc510328230]Complexity characteristics of decoder motion compensation
For each reference picture extended faces need to be generated. This process induces the major complexity overhead of the proposed decoder in respect to JEM 7.0.
[bookmark: _Toc510328231]Complexity characteristics of decoder in-loop filtering operation
A lookup table is used to use the correct pixels according to the 3D arrangement for the deblocking filter. The overhead of this is insignificant. The lookup table needs to be computed once at the start of the sequence or if the resolution of the sequence changes.
[bookmark: _Toc510328232]Complexity characteristics of additional decoder tools
As described in 2.2.3.3 ALF and OBMC have been disabled in some cases. This introduces no overhead.
[bookmark: _Toc510328233]Complexity characteristics of HDR specific decoding tools
n/a
[bookmark: _Toc510328234]Degree of capability for decoder parallel processing
[bookmark: _Toc510328235]SDR specific
No restrictions regarding the parallel decoding capability apply compared to JEM 7.0. The prediction processes for geometric partitioning, such as the spatial and temporal prediction of the partitioning parameters need to consider any potential tile boundaries in this case.
[bookmark: _Toc510328236]360° video specific
The parallelization capability of the decoder differs from JEM / HEVC as the geometry corrected loop filter operation requires matching face boundaries to be decoded before application. In the worst case a block from the top left corner of the picture has to be kept until the last block (bottom right corner) is processed in order to do the geometry corrected deblocking. This has to be regarded for the operation of the deblocking filter.
[bookmark: _Toc510328237]Encoder complexity analysis
It is again noted that the SDR specific tools (e.g. GEO) were not activated for the 360° video category.
[bookmark: _Toc510328238]SDR specific complexity analysis
[bookmark: _Toc504385941][bookmark: _Toc504386106][bookmark: _Ref257647247][bookmark: _Toc510328239]Encoding time and measurement methodology
Encoding time was extracted from the encoder logs produced by the JEM software. Parallel encoding of GOPs was used, and the total encoder runtime was computed by adding the encoding time of all parallelism segments and then subtracting the encoding times of the first for all segments except the first.
The encoding time increases on average to 440% relative to JEM 7.0 and increases on average to 3507% relative to HM16.16 for the Constraint Set 1.
The encoding time increases on average to 333% relative to JEM 7.0 and increases on average to 2684% relative to HM16.16 for the Constraint Set 2.
The maximum encoding runtime increases to 576% relative to JEM 7.0 and 4589% relative to HM16.16 for the Constraint Set 1.
The maximum encoding runtime increases to 401% relative to JEM 7.0 and 3228% relative to HM16.16 for the Constraint Set 2.
[bookmark: _Toc510328240]Description of computing platform used to determine encoding times reported in section 6.1.1
Same computing platform as decoder.
[bookmark: _Toc510328241]Memory usage of encoder
Memory usage for C1 is reported for one GOP as parallel encoding was used.
Table 40: Encoder memory usage for highest rate point.
	Set
	Encoder memory usage

	
	HM 16.16
	JEM 7.0
	JEM 7.0+GEO

	C1 (HD)
	620 MB
	1874 MB
	2954 MB

	C1 (UHD)
	1981 MB
	5982 MB
	9823 MB

	C2 (HD)
	324 MB
	996 MB
	1676 MB

The measurements are based on the following sequences and rate points:
· C1 HD: RitualDance 3.8 Mbit/s
· C1 UHD: ParkRunning 10Mbit/s
· C2 HD: RitualDance 3.8 Mbit/s
[bookmark: _Toc510328242]Complexity characteristics of encoder intra-frame prediction type selection
No changes compared to JEM 7.0.
[bookmark: _Toc510328243]Complexity characteristics of encoder motion estimation and motion segmentation selection
In general, the encoder runtime for GEO increases significantly to approximately 420% compared to JEM 7.0. This is explained by the vastly increased motion estimation steps which are performed for every potential GEO block at the leaf of the QTBT. Note that the current implementation has not been optimized for low complexity. E.g. it is expected that existing redundancies with respect to repeated motion estimation steps can be avoided. [bookmark: _Ref509507964]Figure 39: Relative complexity distribution for JEM 7.0 mode decisions with GEO and relative complexity distributions within the entire GEO estimation process.

[bookmark: _Ref509569408]Figure 40: Relative complexity distribution for JEM 7.0 mode decisions without GEO.

Figure 39 shows the relative complexity distribution determined by profiling of the encoder for one GOP, giving the relative time spent for each estimation step. Figure 40 shows the relative complexity distribution for JEM 7.0 without GEO.
[bookmark: _Toc510328244]Complexity characteristics of encoder transforms and transform type selection
See 5.1.5. The overall encoder complexity is not significantly affected by the additional mode decision steps needed for the SADCT, as can be deduced from Figure 39.
[bookmark: _Toc510328245]Complexity characteristics of encoder quantization and quantization type selection
[bookmark: _Toc504414365][bookmark: _Toc504414509][bookmark: _Toc504414686][bookmark: _Toc504420000][bookmark: _Toc504420151][bookmark: _Toc504422477][bookmark: _Toc504486733]No changes compared to JEM 7.0.
[bookmark: _Toc510328246]Complexity characteristics of encoder in-loop filtering type selection and parameter estimation
No changes compared to JEM 7.0.
[bookmark: _Toc510328247]Complexity characteristics of encoder entropy coding type selection
No changes compared to JEM 7.0.
[bookmark: _Toc510328248]Complexity characteristics of additional encoder tools
No changes compared to JEM 7.0.
[bookmark: _Toc510328249]Complexity characteristics of 360° video specific encoding tools
[bookmark: _Toc510328250]Encoding time and measurement methodology
Comparison to HM 16.16 with YUV output enabled:
Encoding time against HM 16.16 is reported to be 450% on average by the suggested measurement method. This seems implausible since it corresponds to 56% on average against the JEM anchor. This value however is computed from the ratio of HM/JEM encoding time for the anchors, along with the HM encoding time measured on our system. It was not feasible to run the proposed encoder software (based on JEM 7.0) on homogeneous machines. This was however done for the HM encoder. This is probably the cause of the implausible relative encoding runtime computed in this manner.
Due to this, simulations with JEM 7.0 and the same coding format and face arrangement have been run. For encoding the same (inhomogeneous) platform was used as for running the proposed encoder. When measured against these simulations the encoding time is 99% on average. The slight decrease in encoding time is assumed to be due to the increased usage of Inter prediction at face boundaries, which can be computed faster than the Intra prediction used in the anchor. The time required to generate the extended faces, which is a significant factor for the decoder, is negligible for the encoder.
[bookmark: _Toc510328251]Description of computing platform used to determine encoding times reported in section 6.1.1
The server described in section 5.2.1 was used along with a second, identical server. Further, a cluster of virtual machines was used. Each machine ran Ubuntu 16.04 (64bit) and was used to run 8 encoders simultaneously. Each machine had 64 GB of RAM. The available set of servers was not homogeneous in terms of computing capability.
[bookmark: _Toc510328252]Memory usage of encoder
Coded resolution for all sequences: 3840x2560. Maximum required memory was 14.69 GB, while on average 14.59 GB of memory where required.
The memory requirement increases, as 6 additional pictures are stored to use the face extension for motion compensation. This is however an issue of the particular implementation. More efficient implementations may not need to store 6 additional pictures but could store only the data required for the small regions around each face. Another alternative is applying the compensation for each block on the fly. This would require no additional storage, however it would lead to additional computational complexity, as the compensation would have to be performed for each location searched by the encoder.

[bookmark: _Toc510328253]Complexity characteristics of encoder motion estimation and motion segmentation selection
General
For each reference picture extended face need to be generated. These reference pictures are used to do the motion estimation.
[bookmark: _Toc510328254]Complexity characteristics of encoder in-loop filtering type selection and parameter estimation
A lookup table is used to use the correct pixels according to the 3D arrangement for the deblocking filter. The overhead of this is insignificant. The lookup table needs to be computed once at the start of the sequence or if the resolution of the sequence changes.
[bookmark: _Toc510328255]Complexity characteristics of additional encoder tools
As described in 2.2.3.3 ALF and OBMC have been disabled in some cases. This introduces no overhead.
[bookmark: _Toc510328256]Complexity characteristics of HDR specific encoding tools
n/a
[bookmark: _Toc510328257]Degree of capability for encoder parallel processing
[bookmark: _Toc510328258]SDR specific
[bookmark: _Toc504414372][bookmark: _Toc504414516][bookmark: _Toc504414693][bookmark: _Toc504420007][bookmark: _Toc504420158][bookmark: _Toc504422484][bookmark: _Toc504486740][bookmark: _Toc504414373][bookmark: _Toc504414517][bookmark: _Toc504414694][bookmark: _Toc504420008][bookmark: _Toc504420159][bookmark: _Toc504422485][bookmark: _Toc504486741][bookmark: _Toc504414374][bookmark: _Toc504414518][bookmark: _Toc504414695][bookmark: _Toc504420009][bookmark: _Toc504420160][bookmark: _Toc504422486][bookmark: _Toc504486742][bookmark: _Toc504414375][bookmark: _Toc504414519][bookmark: _Toc504414696][bookmark: _Toc504420010][bookmark: _Toc504420161][bookmark: _Toc504422487][bookmark: _Toc504486743][bookmark: _Toc504414376][bookmark: _Toc504414520][bookmark: _Toc504414697][bookmark: _Toc504420011][bookmark: _Toc504420162][bookmark: _Toc504422488][bookmark: _Toc504486744]As stated for the decoder, no restrictions regarding the parallel decoding capability apply compared to JEM 7.0. The prediction processes for geometric partitioning, such as the spatial and temporal prediction of the partitioning parameters need to consider any potential tile boundaries in this case.
[bookmark: _Toc510328259]360° video specific
The parallelization capability of the encoder and decoder differs from JEM / HEVC as the geometry corrected loop filter operation requires matching face boundaries to be decoded before application. In the worst case a block from the top left corner of the picture has to be kept until the last block (bottom right corner) is processed in order to do the geometry corrected deblocking. This has to be regarded for the operation of the deblocking filter.
[bookmark: _Toc510328260]Algorithmic characteristics
[bookmark: _Toc510328261]Random access characteristics for SDR and 360° video
JEM 7.0 characteristics apply.
[bookmark: _Toc510328262]Delay characteristics
[bookmark: _Toc510328263]SDR
JEM 7.0 characteristics apply.
[bookmark: _Toc510328264]360° Video
Decoding unit behavior differs from JEM / HEVC as geometry corrected loop filter operation requires matching face boundaries to be decoded before application. In the worst case a block from the top left corner of the picture has to be kept until the last block (bottom right corner) is processed in order to do the geometry corrected deblocking.
[bookmark: _Toc510328265]Additional characteristics discussion topic(s)
[bookmark: _Toc504414381][bookmark: _Toc504414525][bookmark: _Toc504414702][bookmark: _Toc504420016][bookmark: _Toc504420167][bookmark: _Toc504422493][bookmark: _Toc504486749][bookmark: _Toc504414382][bookmark: _Toc504414526][bookmark: _Toc504414703][bookmark: _Toc504420017][bookmark: _Toc504420168][bookmark: _Toc504422494][bookmark: _Toc504486750][bookmark: _Toc510328266]SDR
n/a
[bookmark: _Toc510328267]360° Video
The cube based EAC projection format is used for coding. The coding face size is required to be multiple of maximum coding unit size. Thus the picture width is required to be a multiple of 3 and of the maximum coding unit size, while the picture height is required to be a multiple of 2 and of the maximum coding unit size.
[bookmark: _Toc510328268]Software implementation description
Both SDR and 360° video specific tools were implemented in JEM 7.0 and can be used in combination with each other. For the proposal however, they were not used in combination.
[bookmark: _Toc510328269]SDR specific software implementation description
Implementation into JEM 7.0. No external libraries used.
[bookmark: _Toc510328270]360° Video specific software implementation description
Proposal is based on JEM 7.0 with 360Lib 5.0. For coding of 360° content several tools have been added or modified:
· Face extension of reference pictures for MC. For each of the cube face an extended face is generated, by projection the other faces to its image plane. The extended face is used for MC instead of the original reference picture. This improves the MC across face boundaries
· Modified loop filters in order to mitigate artifacts at face boundaries. DBF was modified to use the correct pixels. ALF was disabled at face discontinuous boundaries.
· OBMC was disabled at discontinuous face boundaries.
· No external libraries used.
[bookmark: _Toc510328271]Highlighted aspects discussion
[bookmark: _Toc510328272]SDR
[bookmark: _Hlk509846171]The core of this proposal is the transition from performing video compression with a purely block-based approach towards a flexible scheme adapting to object shapes under the rate-distortion constraint. The submission includes proposals for the necessary adaptations of tools in the coding loop. Thereby, coding artifacts are omitted across object boundaries leading to an improved visual impression. The objective results reveal a moderate performance gain. The proponents believe that these numbers do not reflect the full improvement of the perceived visual quality.
[bookmark: _Toc510328273]360° video
The 360° category proposal targets two deficiencies of applying conventional video coding to 360° video content: Artifacts occurring due to motion compensation across face-boundaries are resolved by geometry-compensated face extensions. Loop-filtering is applied according to the 3D arrangement in contrast to the coding arrangement, thereby preventing leakage of disconnected content from one face to another. The proposal does not require coding of any additional information on the block level. In contrast to e.g. padded formats only the actual sample data needs to be transmitted. The observed objective compression gains suggest that the proposed tools have a positive impact on the coding performance.
[bookmark: _Toc510328274]Closing remarks
The authors suggest the proposed tools to be adopted into the new standard for Video Compression Technology with Capability beyond HEVC.
[bookmark: _GoBack]The authors further suggest studying the interaction of the proposed tools with other tools in the corresponding test model. The authors are prepared to contribute to and participate in this effort.
[bookmark: _Toc510328275]Patent rights declaration(s)
[bookmark: _Hlk504502433]RWTH Aachen University may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, would be prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form), or make them available free of charge (per box 1 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form). We are however aware that also other entities may have current or pending patent rights relating to the technology described in this contribution.
[bookmark: _Toc510328276]Annex 1: Questionnaire
[bookmark: _Toc510328277]SDR
Unless noted in the tables the behavior of the proposal software is the same as for JEM 7.0.
[bookmark: _Toc510328278]Codec level Q&A
	Codec Level Q&A
	SDR Proposal
	JEM

	1
	Maximum number of reference frames used by encoder
	same as JEM
	4

	2
	Maximum coding unit (e.g. CTU in HEVC)
	same as JEM
	luma 128×128
chroma 64×64

	3
	Minimum and maximum transform block size
	same as JEM
+
SADCT:
1×1 / 128×128
	luma 4×4/128×128 chroma 2×2/64×64

	4
	Minimum and maximum intra prediction block
	same as JEM
+
prediction segments with at least 8 pixels
	luma 4×4
chroma 2×2

	5
	Minimum inter uni- and multi-hypothesis prediction block size and associated filter tap length
	same as JEM

	luma 4×4 (uni/bi-pred), 8-tap
Chroma 2×2 (uni/bi-pred), 4-tap

	6
	List all the tools that require access of the neighboring reconstructed block samples (before in-loop filtering) for the reconstruction of the current block (excluding tools in intra-prediction category)
	same as JEM

	template matching in FRUC, LIC

	7
	List all the tools that require unconventional operation and/or memory access for video codec such as floating point operations, operations exceeding 32-bit arithmetic, divisions, sample-by-sample recursion, and irregular memory access (e.g. isolated samples, position unforeseeable)
	same as JEM
 (SADCT)
	64-bit arithmetic for LIC, BIO and LMC

	8
	List all the tools that use non-rectangular (e.g. triangle) partitions
	n/a
	n/a

	9
	Indicate whether reference frame resampling is used (e.g. the current picture is in 1080p, while the reference picture is in 720p, and vice versa)
	n/a
	n/a

	10
	Indicate whether luma and chroma use separate partitioning structures
	same as JEM
	Yes, in I-slices

	11
	Indicate whether there are parsing dependencies (e.g. depending on motion vector reconstruction, reconstructed samples and other complex reconstruction processes)
	same as JEM
	Entropy parsing depends on intra prediction mode reconstruction, which requires a more advanced (complex) intra MPM list derivation

[bookmark: _Toc504597535][bookmark: _Toc504597844][bookmark: _Toc504597536][bookmark: _Toc504597845][bookmark: _Toc504597537][bookmark: _Toc504597846][bookmark: _Toc510328279]Tool level Q&A
Category 1. Partitioning structure
	Tool Level Q&A
	

	Category 1. Partitioning structure
	SDR Proposal
	JEM

	1.a
	Whether the prediction unit partitioning is different from transform unit partitioning
	Yes, PU and TU partitioning for a CU can differ (in case GEO is used)
	No

	1.b
	Maximum tree depth
	same as JEM
	QT maximum depth 5
BT maximum depth 3

Category 2. Entropy coding
	Tool Level Q&A
	

	Category 2. Entropy coding
	SDR Proposal
	JEM

	2.a
	Total number of context models
	377
	329

	2.b
	Memory storage size for each context model
	same as JEM
	30-bit

	2.c
	Range table size if table look up is used for range update
	same as JEM
	LPSTable[512×64×9bits]; RenormTable[128×3bits]

	2.d
	Initialization table size
	3×377×8 + 377×15×5 bits
	3×329×8 + 329×15×5 bits

	2.e
	Other memory associated with context model adaptation
	n/a
	n/a

Category 3. Control data derivation process
	Tool Level Q&A
	

	Category 3. Control data derivation process
	SDR Proposal
	JEM

	3.a
	Temporal motion data storage granularity
	same as JEM
	4×4

	3.b
	Worst case number of reference pictures which provide temporal motion data for temporal motion vector derivation (if both list0 and list1 motion data from a bi-directional reference picture are used, count this picture as 2)
	same as JEM
	4

Category 4. Decoder-side motion refinement
	Tool Level Q&A
	

	Category 4. Decoder-side motion refinement
	SDR Proposal
	JEM

	4.a
	Operation type (e.g. SAD, block gradient), minimum processing unit, worst case number of operations (e.g. number of SADs per processing unit) and interpolation filter associated with the motion refinement.
	same as JEM
	1. BIO 2×2D separable 6 taps filter (for gradients), mults per sample in refinement calculation 5+5*4 +1/8+2, minimum processing unit same as regular bi-pred, no SAD calculation
2. FRUC minimum processing unit 44, sequential PU followed by sub-PU level refinement, number of SAD calculations and additional MC interpolations per unit for MV refinement is not constrained (refinement is terminated when cost no longer decreases); bi-linear filter at MV refinement stage

	4.b
	Indicate whether additional reference samples are needed in addition to reference blocks used for regular motion compensation. If yes, describe the largest search window size.
	same as JEM
	1. DMVR needs to access (H+7+2)×(W+7+2) MC instead of (H+7)×(W+7) in HEVC MC
2. FRUC not constrained

	4.c
	Line buffer size in terms of motion vector block lines.
	same as JEM
	<Not stated in template>

Category 5. Intra prediction
	Tool Level Q&A
	

	Category 5. Intra prediction
	SDR Proposal
	JEM

	5.a
	Line buffer size in terms of luma and chroma sample lines
	same as JEM
	luma 4, chroma 2

	5.b
	List all the filters used for intra prediction
	same as JEM
	Reference sample smoothing: {1,2,1}, {3,7,14,16,14,7,3}, {4,9,12,14,12,9,4}

Interpolation: 2×4×32×8 bits (4 taps, 2 sets, 32 phase)

	5.c
	Indicate whether there are cross-component dependencies in intra prediction reconstruction
	same as JEM
	LM-CHROMA (Cb depends on Y, and Cr depends on Cb&Y)

Category 6. Inter prediction
	Tool Level Q&A
	

	Category 6. Inter prediction
	SDR Proposal
	JEM

	6.a
	Motion vector accuracy
	same as JEM
	luma 1/16 pel
chroma 1/32 pel

	6.b
	Storage size for a motion vector component
	same as JEM
	16-bit

	6.c
	List all the interpolation filters used for luma/chroma motion compensation
	same as JEM
	luma 8-tap, 8×16×6 bits
chroma 4-tap, 4×32×6 bits

Category 7. Quantization
	Tool Level Q&A
	

	Category 7. Quantization
	SDR Proposal
	JEM

	7.a
	Storage size associated with quantization
	n/a
	n/a

Category 8. Transforms
	Tool Level Q&A
	

	Category 8. Transforms
	SDR Proposal
	JEM

	8.a
	List all the combinations of transform block size and transform type for primary transforms
	same as JEM
+
SADCT: 1D-transforms of length 1 to 128 are possible
	HEVC transform mode (10-bit DCT-II), transform size combinations:
· (4, 8, 16, 32, 64, 128) × (4, 8, 16, 32, 64, 128) TUs for luma CTUs
· (2, 4, 8, 16, 32, 64) × (2, 4, 8, 16, 32, 64) TUs for inter-coded chroma CTUs
· (2, 4, 8, 16, 32, 64,) × (2, 4, 8, 16, 32, 64) TUs for intra-coded chroma CTUs
EMT transform mode (10-bit DST VII, DCT-V, DCT-VIII, DST-I), only applied to CTUs up to 64×64, transform size combinations:
· (4, 8, 16, 32, 64) × (4, 8, 16, 32, 64) TUs for luma CTUs

	8.b
	List all the combinations of transform block size and transform type for secondary transforms
	same as JEM
	35×3 4×4 and 8×8 non-separable Hypercube-Givens Transform (HyGT)

	8.c
	List all the non-separable transforms used
	same as JEM
	4×4/8×8 HyGT

	8.d
	Indicate whether transforms can be fully/partially implemented using direct matrix multiply
	same as JEM
+
SADCT: direct matrix multiplication in current implementation
	factorized form not equivalent to matrix multiplication

	8.e
	List all the transforms that need multiple iterations (where transform output is fed back as input to the transform logic, and multiple iterations are required to produce final transform output)
	same as JEM
	4×4 HyGT 2-interations, 8×8 HyGT 4-interations

Category 9. In-loop filtering
	Tool Level Q&A
	

	Category 9. In-loop filtering
	SDR Proposal
	JEM

	9.a
	List line buffer size in terms of luma and chroma lines (if any)
	same as JEM

	Deblocking (luma 4 & chroma 2)
SAO (luma 1 & chroma 1)
ALF (luma 8, chroma 4)

	9.b
	List all the filters used for in-loop filtering
	same as JEM
	Deblocking:
For luma: (3 7 9 −3)/16; (8 19 −1 9 −3)/32; (1 2 2 2 1)/8, (1 1 1 1)/4, and
(2 3 1 1 1)/8;
For chroma: (1 4 4 –1)/8.

ALF: 9×9/7×7/5×5 diamond filter support for luma; and 5×5 diamond filter support for chroma

	9.c
	Minimum processing unit size
	same as JEM
	Deblocking (luma 4×4 grid with 4×4 filter decision, chroma 8×8 grid with 2×2 filter decision)
ALF: for luma, filter decision is based on 2×2 block
Bilateral filter: sample level filter switch (luma only)

Category 10. “tool-off” and “tool-on” tests
SDR tool is implemented into JEM 7.0. Comparison is available in excel sheet.
[bookmark: _Toc510328280][bookmark: _Toc504597842]360° Video
[bookmark: _Hlk509823432]Unless noted in the tables the behavior of the proposal software is the same as of JEM 7.0.
[bookmark: _Toc510328281]Codec level Q&A
	Codec Level Q&A
	HM
	Proposal

	1
	Maximum number of reference frames used by encoder
	4
	4 + 4*6 = 28
Only up to 4 are used for any given block.

	7
	List all the tools that require unconventional operation and/or memory access for video codec such as floating point operations, operations exceeding 32-bit arithmetic, divisions, sample-by-sample recursion, and irregular memory access (e.g. isolated samples, position unforeseeable)
	n/a
	64-bit arithmetic for LIC, BIO and LMC
Generation of face extensions uses floating point operations.
Geometry corrected DBF includes mapping of pixel rows to pixel columns and vice versa

	12
	If the coded picture resolution is different from the input picture resolution, list the coded picture resolution for those sequences (e.g. 360° video, input is 8K ERP, coded video is in 4K CMP converted from the 8K input)
	
	Input picture resolutions: 8K or 6K.
Coded picture resolution: 3840x2560

[bookmark: _Toc510328282]Tool level Q&A
Category 6. Inter prediction
	Tool Level Q&A
	

	Category 6. Inter prediction
	HM
	Proposal

	6.c
	List all the interpolation filters used for luma/chroma motion compensation
	luma 8-tap, 8×4×6 bits
chroma 4-tap, 4×8×6 bits
	luma 8-tap, 8×16×6 bits
chroma 4-tap, 4×32×6 bits
Lanczos3 and Lanczos2 for generation of extended faces

Category 9. In-loop filtering
	Tool Level Q&A
	

	Category 9. In-loop filtering
	HM
	Proposal

	9.a
	List line buffer size in terms of luma and chroma lines (if any)
	Deblocking (luma 4 & chroma 2)
SAO (luma 1 & chroma 1)
	Deblocking (worst case requires whole frame before blocks located at face edges can be deblocked)
SAO (luma 1 & chroma 1)
ALF (luma 8, chroma 4)

[bookmark: _Toc510328283]References
[1] MPEG-4 Visual [ISO/IEC 14496-2]
[2] T. Sikora and B. Makai, "Shape-adaptive DCT for generic coding of video," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no. 1, pp. 59-62, Feb 1995.
[3] P. Kauff and K. Schuur, "Shape-adaptive DCT with block-based DC separation and ΔDC correction," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 3, pp. 237-242, Jun 1998.
[bookmark: ref_jvet_d0067][4] J. Sauer and M. Wien, “AHG8: Geometry correction for motion compensation of planar-projected 360vr video”, Doc. JVET-D0067, Joint Video Exploration Team on Future Video coding of ITU-T VCEG and ISO/IEC MPEG, Chengdu, CN, 4th meeting, Oct. 2016
[bookmark: ref_jvet_e0026][5] J. Sauer and M. Wien, “AHG8: Results for geometry correction for motion compensation of planar-projected 360VR video with JEM4.1 and 360Lib”, Doc. JVET-E0026, Joint Video Exploration Team on Future Video coding of ITU-T VCEG and ISO/IEC MPEG, Geneva, CH, 5th meeting, Jan. 2017
[6] J. E. Bresenham, “Algorithm for computer control of a digital plotter”, IBM Systems Journal, 4, 1, 1965, pp. 25–30

[end of document]

image86.png

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

image95.png

image3.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image102.png

image103.png

image104.png

image105.png

image4.png

image106.png

image107.png

image108.png

image109.png

image110.png

image111.png

image112.png

image113.png

image114.png

image115.png

image5.png

image116.png

image117.png

image118.png

image119.png

image120.png

image121.png

image122.png

image123.png

image124.png

image125.png

image6.png

image126.png

image127.png

image128.png

image129.png

image130.png

image131.png

image132.png

image133.png

image134.png

image135.png

image7.png

image136.png

image137.png

image138.png

image139.png

image140.png

image141.png

image142.png

image143.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image1.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image2.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.png

image84.png

image85.png

