	[image:][image:]Joint Video Experts Team (JVET)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
11th Meeting: Ljubljana, SI, 10–18 July 2018
	Document: JVET-K0149-v1

	Title:
	Reference software extension for coding block statistics

	Status:
	Input document to JVET

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Johannes Sauer
Max Bläser
Jens Schneider
Mathias Wien
Jens-Rainer Ohm
	
Tel:
Email:
	
+49 241 80-27678
<lastname>@ient.rwth-aachen.de

	Source:
	RWTH Aachen University

Abstract
[bookmark: _GoBack]An extension for the benchmark set software BMS for writing coding block statistic data is proposed. The proposed extension is based on the “dtrace” implementation available in the BMS/VTM. The implementation enables for switchable output of information on coding tools on a block basis, such as block partitioning, motion vectors, or prediction modes into a separate statistics file. This data may then be used for statistics analysis or visualization of the applied coding tools with the reconstructed YUV file. Visualization of the data is demonstrated using an open source YUV player.

Introduction
In order to facilitate the tool development process for the emerging VVC specification in JVET, an extension of the reference software is proposed to enable straightforward visualization and statistical analysis of coding tool usage in encoded bitstreams. The proposed extension enables the reference software encoder and decoder to write out statistics files in a configurable way, which in turn can be loaded into a suitable YUV player for overlay of the reconstructed YUV sequence, or can be used for statistical analysis at a selectable scope (e.g. bock/picture/sequence level). An example implementation for such visualization is available with the open-source YUView player (https://github.com/IENT/YUView).
It is proposed to integrate and maintain this extension of the reference software as a courtesy for the JVETs standardization work.
Block statistics extension for BMS
The extension has been added to BMS 1.1 and is available along with this document.
The extension uses a defined set of supported statistics. A list of these statistics is written as a header into the output file. Once a coding unit has been en/decoded the extension iterates over all the coding units and prediction units it contains and writes the appropriate coding statistics to the output file.
Using the block statistics extension
The “dtrace” functionality of the BMS software has been extended. The trace channel “D_BLOCK_STATISTICS” has been added for block statistics. Block statistics are created when the macros ENABLE_TRACING and ENABLE_BLOCK_STATS are set to 1. Then the encoder supports the following additional arguments:

	--TraceFile
	File name of the produced trace file.

	--TraceRule
	Specifies which traces should be saved, and for which POCs.

A concrete example of the arguments for generating a block statistics file is:
--TraceFile="RaceHorsesL_832x480_QP32_dec.vtmbmsstats" --TraceRule="D_BLOCK_STATISTICS:poc>=0"
The trace file will contain a header listing information of all available block statistics. For each statistic it lists a type and a scale for vectors or range for integers if applicable:
VTMBMS Block Statistics
Sequence size: [832x 480]
Block Statistic Type: PredMode; Flag;
Block Statistic Type: MergeFlag; Flag;
Block Statistic Type: MVL0; Vector; Scale: 4
Block Statistic Type: MVL1; Vector; Scale: 4
Block Statistic Type: IPCM; Flag;
Block Statistic Type: Y_IntraMode; Integer; [0, 73]
Block Statistic Type: Cb_IntraMode; Integer; [0, 73]
…
Two formats are available for the statistics for each block, a human readable format and a CSV based format. The header remains the same for both cases.
For both formats each row contains the information for one block statistic. The order of the data is: picture order count (POC), location of top left corner of the block, size of the block, name of the statistic, and value of the statistic.
A macro is available in order to choose the required format.
The human readable format can also be easily processed with other software, for example YUView, using regular expressions. The CSV based formats provides the universal interface required by spreadsheet applications.
The human readable format is based on the format used for the other dtrace statistics. Some examples for this format are:
BlockStat: POC 16 @(112, 0) [8x 8] SkipFlag=1
BlockStat: POC 16 @(112, 0) [8x 8] InterDir=1
BlockStat: POC 16 @(112, 0) [8x 8] MergeFlag=1
BlockStat: POC 16 @(112, 0) [8x 8] MergeIdx=0
BlockStat: POC 16 @(112, 0) [8x 8] MergeType=0
BlockStat: POC 16 @(112, 0) [8x 8] MVPIdxL0=255
BlockStat: POC 16 @(112, 0) [8x 8] MVPNumL0=255
BlockStat: POC 16 @(112, 0) [8x 8] RefIdxL0=0
BlockStat: POC 16 @(112, 0) [8x 8] MVDL0={ 0, 0}
BlockStat: POC 16 @(112, 0) [8x 8] MVL0={ -70, 18}
BlockStat: POC 16 @(112, 8) [8x 8] PredMode=0
BlockStat: POC 16 @(112, 8) [8x 8] PartSize=0
Some examples of the CSV based format are:
BlockStat;16; 112; 0; 8; 8;SkipFlag;1
BlockStat;16; 112; 0; 8; 8;InterDir;1
BlockStat;16; 112; 0; 8; 8;MergeFlag;1
BlockStat;16; 112; 0; 8; 8;MergeIdx;0
BlockStat;16; 112; 0; 8; 8;MergeType;0
BlockStat;16; 112; 0; 8; 8;MVPIdxL0;255
BlockStat;16; 112; 0; 8; 8;MVPNumL0;255
BlockStat;16; 112; 0; 8; 8;RefIdxL0;0
BlockStat;16; 112; 0; 8; 8;MVDL0; 0; 0
BlockStat;16; 112; 0; 8; 8;MVL0; -70; 18
BlockStat;16; 112; 8; 8; 8;PredMode;0
BlockStat;16; 112; 8; 8; 8;PartSize;0
List of supported block statistics
The following block statistics have been implemented as an initial proposal:
	PredMode
	MergeType

	MergeFlag
	MVPIdxL0

	MVL0
	MVPNumL0

	MVL1
	MVDL0

	IPCM
	RefIdxL0

	Y_IntraMode
	MVPIdxL1

	Cb_IntraMode
	MVPNumL1

	Cr_IntraMode
	MVDL1

	SkipFlag
	RefIdxL1

	PartSize
	IMVFlag

	Depth
	FrucMrgMode

	QT_Depth
	AffineFlag

	BT_Depth
	AffineMVL0

	MT_Depth
	AffineMVL1

	ChromaQPAdj
	EMTFlag

	QP
	LICFlag

	SplitSeries
	OBMCFlag

	RootCBF
	MVRefineFlag

	TransQuantBypassFlag
	PDPCFlag

	MergeIdx
	NSSTIdx

	InterDir
	

Visualization of block statistics
The block statistics can be viewed with YUView, which is freely available under GPLv3:
https://github.com/IENT/YUView/tree/vtmbms_statistics
For viewing the block statistics use the branch vtmbms_statistics. YUView assumes that the file extension of block statistics file is “.vtmbmsstats”. However, if a file is not recognized you can choose from a list of supported file formats.
Statistics can be overlaid with YUV sequences. Some example snapshots are:
[image: raceHorsesShot2MotionVectors]
Figure 1: Motion vectors

[image: raceHorsesShot3SkipFlag]
Figure 2: Skip flag
Howto add support for new tools
If you want to add further block statistics, you have to edit
source/Lib/CommonLib/dtrace_blockstatistics.h
source/Lib/CommonLib/dtrace_blockstatistics.cpp
In source/Lib/CommonLib/dtrace_blockstatistics.h do the following:
Add your statistic to the BlockStatistic enum:	
enum class BlockStatistic {
 PredMode,
 MergeFlag,
 MVL0,
 YOURS,

Further, add your statistic to the map blockstatistic2description:
static const std::map<BlockStatistic, std::tuple<std::string, BlockStatisticType, std::string>> blockstatistic2description =
{
 // Statistics enum									Statistics name string	Statistic Type		Type specific information:
 //															Value range, vector scale
 { BlockStatistic::PredMode,	std::tuple<std::string, BlockStatisticType, std::string>{"PredMode",	BlockStatisticType::Flag,	""}},
 { BlockStatistic::MVL0,		std::tuple<std::string, BlockStatisticType, std::string>{"MVL0",	BlockStatisticType::Vector,	"Scale: 4"}},
 { BlockStatistic::Y_IntraMode,	std::tuple<std::string, BlockStatisticType, std::string>{"Y_IntraMode",	BlockStatisticType::Integer,	"[0,"+std::to_string(NUM_INTRA_MODE) + "]"}},
 YOURS

Then, add the code to write your statistic in source/Lib/CommonLib/dtrace_blockstatistics.cpp in getAndStoreBlockStatistics(…). This function is called once for each CTU, after it has been en/decoded. The following macros have been defined to facilitate writing of block statistics:
DTRACE_BLOCK_SCALAR(ctx,channel,cs_cu_pu,stat_type,val)
DTRACE_BLOCK_VECTOR(ctx,channel,cu_pu,stat_type,v_x,v_y)
DTRACE_BLOCK_AFFINETF(ctx,channel,pu,stat_type,v_x0,v_y0,v_x1,v_y1,v_x2,v_y2)
getAndStoreBlockStatistics iterates over each CU in the CTU and over each PU in each CU. It tries to write out all coding information which is stored in those.
Some examples for writing block statistics are:
· Prediction mode, always written:
DTRACE_BLOCK_SCALAR(g_trace_ctx, D_BLOCK_STATISTICS, cu, GetBlockStatisticName(BlockStatistic::PredMode), cu.predMode);
· Skip flag, only written if set:
if(cu.skip)
{
DTRACE_BLOCK_SCALAR(g_trace_ctx, D_BLOCK_STATISTICS, cu, GetBlockStatisticName(BlockStatistic::SkipFlag), cu.skip);
}

Conclusions
It is proposed to add this extension to the VTM/BMS software and maintain it as courtesy for analysis of the application and functionality of coding tools in the VVC specification development.
Patent rights declaration(s)
RWTH Aachen University does not have any current or pending patent rights relating to the technology described in this contribution.

	Page: 1	Date Saved: 2018-07-02
image3.png

image4.png

image1.png

image2.png

